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Attention for Adaptive Convolution in Convolutional Neural

Networks for Single Image Super-Resolution

Karam Parka) and Nam Ik Choa)

Abstract

There have been many works on single image super-resolution (SISR) using convolutional neural networks (CNNs), researching
on network architecture, loss function, applications, etc. However, very few have studied the modification or adaptation of the
convolution operation, which is the fundamental element of CNN. In most CNN-based methods, the filter weights do not change at
the inference phase, i.e., filter parameters are fixed regardless of the input and its regional characteristics. We note that this
conventional approach is parameter-efficient but may not be optimal in performance due to its inflexibility to regionally different
input statistics. To tackle this problem, we propose a novel convolution operation named Adaptive Convolution, which has
content-specific characteristics. The proposed method adaptively adjusts filter weights according to the regional characteristics of the
input with the help of an attention mechanism. We also introduce a kernel fragmentation method, which enables the efficient
implementation of the Adaptive Convolution. We embed our new convolutional layer into several well-known SR networks and
show that it enhances their performances while requiring a small number of additional parameters. Also, our method can be used
along with other attentions that manipulate the features, further increasing the performance.
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. Introduction

Single image super-resolution is a task that recovers a

high-resolution (HR) output from its low-resolution (LR)

counterpart by reconstructing lost information in the LR

image. Due to its versatility and applicability, SISR is ap-

plied in diverse fields, such as medical imaging[32,35], satel-

lite imaging[38], surveillance[33,46], and HDTV[9]. The SISR

task is challenging due to its ill-posedness, meaning that
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many different HR images can be SR results of the same

LR input. To tackle this problem, various classical SR

methods have been proposed, such as patch-based meth-

ods[4,8], statistics-based methods[23,42], sparse-coding-based

methods[43,44], etc.

Recent developments in deep learning have promoted ac-

tive research for deep learning-based SR methods. Dong

et al.[6] proposed the first convolutional neural network

(CNN) for the SR task, which outperforms classical SR al-

gorithms[4,23,39,44]. By using only three convolutional layers,

they demonstrated that CNNs have significant potential in

the SR field. Afterward, numerous methods have been pro-

posed to improve the performance of SR networks. The in-

troduction of residual connections[13] enabled the SR net-

work to have more layers, allowing the network to have

larger receptive fields and achieve excellent performance.

However, as the number of layers grows in the above net-

works, the computational cost also increases linearly

whereas the performance gains are typically saturated.

Moreover, simply increasing receptive fields does not guar-

antee the inclusion of more influential pixels for SR re-

construction, as mentioned in[10]. This implies that the un-

necessary information also grows as the receptive field in-

creases, impeding the performance increase.

The attention mechanism has been introduced to address

this problem, allowing the network to focus on more helpful

information. Channel attention (CA)[47] generates per-chan-

nel scaling factors to suppress unimportant channels and thus

improve network performance. Non-local attention[5,30,48] ex-

tracts useful features from a long range of input pixels by

capturing their distant dependencies, improving SR perform-

ance significantly at the cost of an enormous computational

burden. As aforementioned, many studies have been con-

ducted on applying attention for feature interdependencies,

yet there are a few studies about using attention to filtering

operations. The convolution operation is channel-specific

and spatial-agnostic, i.e., different filter weights are applied

to different channels, but the weights are fixed over the

region. Notably, fixed weights are not ideal for handling the

input with regionally varying statistics, which may lead to

sub-optimal results[50].

In this paper, we propose Adaptive Convolution (AC) to

tackle the above limitations, which can apply regionally

different filters. We compute attention from the input and

apply it to adjust the filter kernel. Hence, we can perform

a different convolution on each spatial position. Specifi-

cally, we define the AC layer in which filter kernels are

adjusted depending on input feature statistics. We also in-

troduce a filter fragmentation method for the efficient im-

plementation of our AC scheme. We define this scheme as

the AC layer and apply it to several well-known SR

networks. Extensive experiments show that our AC im-

proves the performance in every case, often exceeding the

performances of conventional CA. In addition, when we

use CA and AC together, we can have more gains, showing

that our AC can complementarily work with the conven-

tional attention schemes.

. Related Works

1. Single Image Super-Resolution

Since the SRCNN first demonstrated that CNN has po-

tential in the SR field, various deep learning-based SR

methods have been proposed. Kim et al.[22] proposed

VDSR, showing that increasing the depth effectively im-

proves the performance. Shi et al.[34] proposed to apply the

pixel-shuffle operation at the end of the network to im-

prove previous inefficient upsampling methods. Ledig et

al.[25] introduced residual connection into the SR network,

showing that residual connection is an effective way to in-

crease SR performance. The introduction of residual con-

nection and the efficient upsampling operation[34] resulted

in significant performance improvement through depth-

wise expansion[28].
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In addition, various network designs have been sug-

gested further to improve the performance or efficiency of

the SR network. Recursive network design[21,36,37] employs

the same modules recursively to learn LR-HR mapping

without increasing parameters. Multi-path network de-

sign[11,27] handles features with multiple paths to achieve

better representational ability. Dense connection de-

signs[12,49] reuse features from preceding layers[16] to en-

hance the reconstruction performance. Complex residual

connection designs[14,31] have been proposed to explore

more efficient residual blocks. As mentioned above, vari-

ous structural developments have been attempted, yet few

studies have considered spatially-adaptive convolution,

which is our main objective.

2. Attention Mechanism for SR

The attention mechanism enables the network to focus

more on informative relations or locations. Channel attention

(CA) enhances the network representations by considering

the interdependencies of channels. With global average pool-

ing and two dense layers, CA produces channel-wise scaling

factors to suppress less important channels. Based on the

Squeeze-and-Excitation block[15], Zhang et al.[47] proposed

RCAN, adopting CA into the SR network. Non-local atten-

tion helps the network consider relationships between fea-

tures in spatially distant locations.

Non-local attention captures all possible pair-wise fea-

ture interdependencies, and it was also adopted to SR net-

works to overcome the limitation of local receptive fields

of the plain CNN[5,30,48]. Unlike these attention methods that

find spatial and channel correlation to control their con-

tributions, we apply the attention to control the filter kernel

to apply spatially adaptive filtering.

3. Dynamic Kernel

The traditional convolution operation in CNNs is con-

tent-independent, i.e. the same filter is used for all posi-

tions of the input, which is suboptimal for the input with

spatially varying properties. In order to deal with this short-

coming, Xu et al.[19] introduced a dynamic filtering scheme,

which has a filter-generating network and dynamic filtering

layer. Zhou et al.[50] proposed computationally efficient

Decoupled Dynamic Filter Networks by decoupling a

depth-wise dynamic filter into spatial- and channel-dynamic

filters. Li et al.[26] proposed an efficient and effective oper-

ator Involution, which inverts the spatial-independent and

channel-specific characteristics of convolution.

Commonly, these dynamic convolution methods utilize

a filter-generating module to directly generate kernels for

each pixel. This generally requires many computations and

excessive memories for storing different filter coefficients

for the whole number of pixels. Hence, despite the advant-

age of improving feature representation, it is challenging

Fig. 1. Comparison between Convolution operations. (a) Standard
Convolution applies a static filter globally. (b) Dynamic Convolution
generates filters for each location via Filter-generating Module. (c)

Proposed Adaptive Convolution calculates the attention map via the
Attention Module and generates per-pixel filters using the attention map
and static filter
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to apply conventional dynamic filtering methods for the

SR. To resolve this problem, we introduce an attention

mechanism for adaptive filtering and its efficient computa-

tion by our proposed filter fragmentation. Unlike previous

methods, we use an attention module that predicts region-

ally appropriate filters. Precisely, we adaptively scale parts

of the static filters according to the attention scaling

factors. The proposed filter fragmentation method sim-

plifies the dynamic filtering process into element-wise mul-

tiplication of attention maps and features, which is de-

scribed in Section .2. The difference between standard

convolution, dynamic convolution, and the proposed AC is

illustrated in Figure 1.

. Adaptive Convolution

The classic convolution operation in CNNs is to apply

a static filter for all pixels of the input. Using a static filter

is efficient regarding the computation time and structural

modularity, but it may yield sub-optimal results for the in-

puts with varying statistics[50]. In this section, we introduce

the AC that applies regionally different weights to cope

with spatially varying properties of inputs.

1. Concept of Adaptive Convolution

To define the AC, we first consider the standard con-

volution operation defined as

′   
∈

）＋

where ′  ∈R  denotes the output feature vector at

the i-th pixel,  ∈R  denotes the input feature at the

j-th pixel,  represents the pixels within the range of

the convolution window (K×K) around the i-th pixel,

∈R ××× denotes a convolutional kernel with the

size of K,  denotes the offset defined by the distance

and direction between the i-th and the j-th pixel, and b denotes

the bias. As shown above, the fixed filter  is shared across

the input feature vectors, regardless of their content. To assign

spatially adaptive characteristics to the convolution operation,

we apply the attention mechanism to suppress or enhance input

at a specific location based on the pixel content. The new oper-

ation for this purpose, named AC, is defined as:

′   
∈

′ 

′  

where ′∈R ××××× is the weight of the AC,

and ∈R ××× is the attention scaling factors, which

is conditioned on the input feature vector at the i-th pixel

. The generalized AC described in above equations

is illustrated in Figure 2.

2. Implementation of Adaptive Convolution

For implementing spatially varying convolution to the

Fig. 2. Filter generation process with the kernel size of 3. ∈R × denotes

the weight vector of the filter at the offset , represents element-wise multiplication,

and ∈R× represents its corresponding attention scaling factor. For the con-

venience of visualization, channel and spatial dimensions are omitted
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image of size H×W, it may seem that the dimension of the

filter must be increased from R ××× (memory for

storing the static filter) to R ×××××, which un-

duly increases the system complexity. One of the efficient

methods to implement this idea is to split the filter and ap-

ply attention to the features created by fragment filters rath-

er than directly to the whole filter. From Equations (2) and

(3), this method can be described as:

′   
∈

＋

 
∈

＋

where ∈R××× is the fragment filter from

the whole filter , and ∈R× represents the at-

tention scaling factor for the fragment filter  at the

i-th pixel. The attention scaling factors from the attention

module are computed as:

  

where ∈R× represents the attention scaling factor of

the offset , and  refers to the attention module. The im-

plementation of generalized AC is illustrated in Figure 3.

Fig. 3. Implementation method of generalized Adaptive Convolution.

1×1 CONV- refers to fragment filter  , P represents padding oper-

ation corresponding to offset , and  is an attention scaling factor

of its counterpart fragment filter 

3. Design of Adaptive Convolution

Following the method in Section 3.2, the 3×3 general

AC layer can be implemented with nine 1×1 convolution

filters. In addition, we design the AC layer that is more

suitable for the SR task. Inspired by the Sobel operator

[20], where the filter is divided into three parts, we pro-

pose a method of dividing a 3×3 convolution filter into

three 3×1 and three 1×3 fragment filters. For this, attention

scaling factors from the attention module share the same

value row-wise ∙∙∈R××× or column-wise

∙∙∈R××× , which is illustrated in Figure 4.

Fig. 4. Illustration of the filter generation process of Adaptive Convolu-
tion with the fragment 3×1 and 1×3 filters. (Top) 3×1 fragment filter
shares attention scaling factor row-wise. (Bottom) 1×3 fragment filter

shares attention scaling factor column-wise

Fig. 5. Implementation of the Adaptive Convolution with the fragment

1×3 and 3×1 filters. 1×3 and 3×1 CONV refer to fragment filters,

P∙ represents padding operation corresponding to its offset, 

means the number of channels, and  is an attention scaling factor

of its corresponding fragment filter
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To obtain balanced feature representations, we acquire half

of the feature channels from 1×3 filters and the other half

from 3×1 filters. The above-mentioned process is depicted

in Figure 5.

For the SR task, experiments in Section .3 show that

the AC layer implemented with 3×1 and 1×3 is a better

choice than several 1×1 filters. This is because edge-related

information is important in the SR task, and it is more ad-

vantageous to consider multiple adjacent pixels together than

a single pixel to collect edge-related information. Hence, in

the rest of this paper, we consider AC as a 3×3 convolution

layer implemented with 3×1 and 1×3 fragment filters.

4. Application of Adaptive Convolution

The residual block (Fig. 6a) is a widely adopted structure

for SR networks. There are three possible ways to apply

the AC, as shown in Figs. 6b, 6c and 6d. The ablation stud-

ies in Section .3 show that replacing the first convolution

layer with the AC (see Fig. 6b) yields the best results for

the SR. This indicates that convolution layers in residual

Fig. 6. (a) Residual block, (b),(c),(d) Possible ways of applying the

Adaptive Convolution to Residual block

blocks have different purposes, and it is important for the first

convolution layer to receive edge-related information

selectively. A detailed explanation is provided in Section .3.

. Experimental Results

1. Implementation Details

As the attention module for controlling the AC, a simple

structure consisting of a 1×1 convolution layer and a sig-

moid activation layer is used. For a fair comparison, we

Fig. 7. Qualitative Comparisons with state-of-the-art methods on the Urban100 (×4) datasets. Our results are collected from

EDSR-b16c64-A, which is the EDSR baseline with the Adaptive Convolution
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implement and train all compared models in the same

environment. Specifically, all models are trained with 800

train images from DIV2K dataset[1], following most of the

previous works. Also, we augment data with combinations

of flips and rotations and use 48×48 sized RGB patches.

For the evaluation, four benchmark datasets are selected in-

cluding Set5[3], Set14[45], BSD100[29], and Urban100[17]. For

the generation of LR images, we used bicubic down-

sampling, following previous methods. For quantitative

comparison, we use the peak signal-to-noise ratio (PSNR)

and structural similarity index (SSIM)[41] on the luminance

(Y) channel of test images. We set the minibatch size as

16. For training, we use ADAM optimizer[24] with   ,

and   . The initial learning rate is set to ×,

and the decaying factor is set to 0.85 for every ×

iterations. We use the L1 loss as a loss function. All results

are trained and evaluated on the NVIDIA TITAN XP GPU

device.

2. Effectiveness of the Adaptive Convolution in
SR networks

To show the effectiveness of our AC as a new con-

volution layer, we first apply the AC to the simple EDSR

Scale Method Param
Set5 Set14 BSD100 Urban100

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

×2

FSRCNN 0.01M 37.00 0.9558 32.63 0.9088 31.53 0.8920 29.88 0.9020

DRRN 0.30M 37.74 0.9591 33.23 0.9136 32.05 0.8973 31.23 0.9188

MemNet 0.68M 37.78 0.9597 33.28 0.9143 32.08 0.8978 31.31 0.9195

OISR-LF-s 1.37M 38.02 0.9605 33.62 0.9178 32.20 0.9000 32.21 0.9290

CARN 1.59M 37.76 0.9590 33.52 0.9166 32.09 0.8978 31.92 0.9256

EDSR-b16c64 1.37M 38.02 0.9607 33.60 0.9180 32.20 0.9004 32.15 0.9291

EDSR-b16c64-A 1.38M 38.08 0.9610 33.74 0.9191 32.22 0.9006 32.26 0.9299

OISR-LF 4.97M 38.12 0.9609 33.78 0.9196 32.26 0.9007 32.52 0.9320

MSRN 5.89M 38.08 0.9605 33.74 0.9170 32.23 0.9013 32.22 0.9326

EDSR-b24c96 4.41M 38.10 0.9610 33.77 0.9194 32.26 0.9011 32.50 0.9321

EDSR-B24C96-A 4.42M 38.16 0.9611 33.80 0.9190 32.28 0.9013 32.56 0.9326

×3

FSRCNN 0.01M 33.16 0.9140 29.43 0.8242 28.53 0.7910 26.43 0.8080

DRRN 0.30M 34.03 0.9244 29.96 0.8349 28.95 0.8004 27.53 0.8378

MemNet 0.68M 34.09 0.9248 30.00 0.8385 28.96 0.8001 27.56 0.8376

OISR-LF-s 1.55M 34.39 0.9272 30.35 0.8426 29.11 0.8058 28.24 0.8544

CARN 1.59M 34.29 0.9255 30.29 0.8407 29.06 0.8034 28.06 0.8493

EDSR-b16c64-A 1.56M 34.50 0.9276 30.40 0.8442 29.15 0.8072 28.32 0.8563

OISR-LF 5.64M 34.56 0.9284 30.46 0.8450 29.20 0.8077 28.56 0.8606

MSRN 6.08M 34.38 0.9262 30.34 0.8395 29.08 0.8041 28.08 0.8554

EDSR-b24c96-A 4.84M 34.55 0.9281 30.47 0.8453 29.21 0.8089 28.56 0.8610

×4

FSRCNN 0.01M 30.48 0.8628 27.49 0.7503 26.90 0.7101 24.52 0.7221

DRRN 0.30M 31.68 0.8888 28.21 0.7720 27.38 0.7284 25.44 0.7638

MemNet 0.68M 31.74 0.8893 28.26 0.7723 27.40 0.7281 25.50 0.7630

OISR-LF-s 1.52M 32.14 0.8947 28.63 0.7819 27.60 0.7369 26.17 0.7888

CARN 1.59M 32.13 0.8937 28.60 0.7806 27.58 0.7349 26.07 0.7837

EDSR-b16c64-A 1.52M 32.24 0.8946 28.65 0.7838 27.62 0.7386 26.20 0.7904

OISR-LF 5.50M 32.33 0.8968 28.73 0.7845 27.66 0.7389 26.38 0.7953

MSRN 6.33M 32.07 0.8903 28.60 0.7751 27.52 0.7273 26.04 0.7896

EDSR-b24c96-A 4.75M 32.36 0.8960 28.75 0.7863 27.68 0.7410 26.44 0.7978

Table 1. Quantitative comparisons of EDSR baseline added with our AC and previous networks with similar numbers of parameters.
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baseline[28] and see whether they improve the performance.

Then, we generalize the claim by applying the AC to other

well-known SR methods by showing their improvements.

We prepare several variants of EDSR baseline and add

the AC to each of them, and compare with several well-

known SR networks having similar numbers of parameters

in Table 1. Note that we do not claim that the EDSR+AC

works better than recent state-of-the-art SR networks in this

table, but show how much the AC improves the baseline

and its performances compared to similar networks. Our

main claim is that our AC can improve many other SR net-

works, including more recent methods than the ones in

Table 1, which will be addressed later in Section .3 and

Table 5.

Regarding the notations of EDSR baseline in Table 1,

the numbers of residual blocks and channels are written af-

ter b and c, respectively. When a model’s first layer of the

residual block is changed to the AC layer, it is denoted

with the suffix “-A.” The table shows that our

EDSR-b16c64-A models perform comparably to other sim-

ilar-complexity methods. Also, Figure 7 shows that our

method provides visually better results. Regarding the com-

plexity, compared to one convolution layer with 64 chan-

nels having around 37K of parameters, our parameter over-

head due to the attention module is only 0.39K per residual

block.

3. Ablation Studies

In this section, we investigate the effect of the proposed

method and compare its performance with possible alter-

natives mentioned in Sections .2 and .3. All ablation

studies are performed using the EDSR baseline

(EDSR-b16c64) as a base network model, on the bench-

mark datasets (×2).

First, we investigate the best position of the AC layer

in a residual block. As described in Figs. 6b, 6c and 6d,

we select these three methods as candidates. The re

Block Param Set5 Set14 BSD100 Urban100

C-R-C 1.37M 38.02 33.60 32.20 32.15

A-R-C 1.38M 38.08 33.74 32.22 32.26

C-R-A 1.38M 38.07 33.70 32.22 32.26

A-R-A 1.38M 38.04 33.70 32.23 32.26

Table 2. Ablation studies on the choice of the position in the residual
block. C represents the convolution layer, R is ReLU activation Layer,
and A refers to the Adaptive Convolution layer.

construction performances of each candidate are shown in

Table 2. In Table 2, we denote the convolution layer,

ReLU activation layer, and the proposed AC layer as C,

R, and A, respectively. From the table, we observe that

the proposed A-R-C method shows significant perform-

ance improvement compared to the C-R-C baseline. Note

that our method has the same convolutional operation as

the baseline, except that the attention module suppresses

uninformative pixels from being received. Compared to

other candidates, the proposed A-R-C residual block

shows slightly better performance. Interestingly, the

A-R-A residual block shows mediocre performance even

with more AC layers. This result indicates that two con-

volution layers in the residual block may have different

purposes, and constraint operation of both layers with at-

tention may hinder the function of the residual block in

the SR network.

Next, we analyze the performance of the model with

the AC using different fragment filter settings. The com-

parison results are shown in Table 3, where 9×(1×1) is

the generalized AC filter in Section 3.1, and 3×(1×3, 3×1)

Filter Param Set5 Set14 BSD100 Urban100

baseline 1.37M 38.02 33.60 32.20 32.15

9×(1×1) 1.38M 38.05 33.73 32.21 32.21

2×(3×3) 1.38M 38.05 33.69 32.20 32.16

3×(1×3,3×1) 1.38M 38.08 33.74 32.22 32.26

Table 3. Ablation studies on the choice of fragment filter. The first con-
volution layer of the residual block is altered with the AC layer with
the other fragment filters, where we use EDSR-baseline (EDSR-

b16c64) as a baseline model
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is the proposed method in Section 3.3. In addition to this,

we add 2×(3×3) with the exactly same number of parame-

ters as the proposed method to compare the effect of in-

creasing parameters on the performance. Strictly speaking,

2×(3×3) is not the AC, but it just has two 3×3 branches

and an attention mechanism similar to the proposed

method. For 2×(3×3), three attention scaling factors are ap-

plied to each 3×3 branch. As shown in Table 3, with a

slight increase of parameters, our two methods show sig-

nificant performance improvements compared to the

baseline. Even though 9×(1×1) has more options in sup-

pressing the filter, 3×(1×3, 3×1) performs better. This im-

plies that suppressing the filter row-wise or column-wise

is better than pixel-wise for edge finding, like the Sobel

operator. By comparing the proposed method with

2×(3×3), we demonstrate that simply increasing the param-

eter does not significantly improve the performance. We

describe in detail how the proposed filter attention works

in Section .4.

Then, we compare our method with the most widely

used attention method for SR, CA. In addition, we apply

both CA and the proposed approach to the baseline and

compare its performance, denoted as “+ AC & CA.” Table

4 compares how our AC and the conventional CA are af-

fecting the performance of the baseline network. From the

2nd and 3rd rows, we can see that our AC is slightly better

than the CA while requiring slightly fewer parameters.

Also, the 4th row shows that using both AC and CA does

not improve the results in the case of Set5, Set14, and

BSD100, but improves the performance for Urban100. We

conjecture that two different attention schemes work com-

plementarily for the Urban100, which contains images with

high-frequency structures that are difficult to restore

correctly. Considering that most of the previous attention

methods also scale the features resulting from the con-

volution layer, we believe our method can be concurrently

used with other attention methods as well.

Finally, we apply our method to other SR network mod-

els and compare their performances. To show that the pro-

posed method has generality, we apply our method to

IMDN[18] and A2F[40], which have complex structures that

do not resemble EDSR structures. Table 5 compares the

performance of networks with and without AC. All models

in Table 5 are trained from scratch with the settings in

Section .1. With a small parameter overhead, our method

improves the reconstruction performance of both models.

Note that IMDN[18] and A2F[40] have complicated hand-

crafted structures with CA-variants. Through ablation stud-

ies, we show that the proposed method is applicable to var-

ious structures other than simple EDSR-like structures.

Method Param Set5 Set14 BSD100 Urban100

baseline 1.37M 38.02 33.60 32.20 32.15

+ AC 1.38M 38.08 33.74 32.22 32.26

+ CA 1.38M 38.04 33.70 32.22 32.24

+ AC & CA 1.39M 38.09 33.72 32.22 32.35

Table 4. Comparison with the widely used channel attention (CA)
method. We also test the simultaneous use of the proposed method
with CA.

Method Param Set5 Set14 BSD100 Urban100

IMDN 0.69M 38.03 33.56 32.15 32.09

IMDN-A 0.70M 38.06 33.69 32.18 32.20

A2F-L 1.36M 38.10 33.75 32.23 32.43

A2F-L-A 1.37M 38.10 33.78 32.24 32.50

Table 5. Ablation studies on different models. The first convolution

layer of the residual block is altered with the Adaptive Convolution
layer. All models are trained from scratch by ourselves. Models with
the Adaptive Convolution method are denoted with the suffix “-A.”

4. Model Analysis

In this section, we investigate how the proposed method

works in the SR network by examining the attention maps

used in each layer. As shown in Figure 8, we compared

attention maps for 1×3 and 3×1 fragment filters at the 1st,

4th, 8th, 12th, and the last residual blocks. To visualize at-

tention maps, we use attention values from three channels
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as RGB channel values. For visibility, we also compare at-

tention maps normalized with their maximum value.

First, we compare the patterns of the attention map

responses. Regardless of the filter shape, attention maps

show a sparse response as the layer deepens. This is con-

sistent with the result of previous works showing a sparse

response near edges as the SR network deepens. As the

depth increases, we observe that different patterns of re-

sponses appear depending on the shape of the fragment

filters. For example, attention maps for the 1×3 filters (first

and second row) tend to respond near vertical edges as the

layer deepens. This is because the shape of the filter 1×3

is advantageous to grasp the vertical edge, and the attention

mechanism helps the filter to focus more on the vertical

edges.

Next, we investigate the response of the attention map

at each pixel. It is noticeable that various colors are ob-

served in the same activation map. These results imply that

various filters are utilized in the same layer, and these

adaptive filters, conditioned on the pixel content, contribute

to performance improvement as intended. Intriguingly, in

the shallow layers, it is observed that a part of the filter

is used to distinguish image parts with different

characteristics. Considering that the proposed method is de-

signed for discriminating edges better, the network seems

to have utilized the proposed method by adapting to the

shallow layer environment. We also observe that various

colors appear in the attention map as layers get deeper.

This indicates that the deeper the layer, the more various

filters are required for better feature representation.

. Conclusion

In this paper, we have introduced Adaptive Convolution,

a novel convolution operation that utilizes an attention

mechanism to adjust the filter weights regarding the region-

ally varying context of images. The proposed Adaptive

Convolution, whose weights are controlled by attention,

improves the feature representation by preventing less-in-

Fig. 8. Visualized attention maps of the EDSR-b16c64-A (×2) in the 1st, 4th, 8th, 12th, and the

last residual blocks. The color expressed for each pixel indicates the characteristics of the filter at
the position. The color difference between pixels means that different convolution operations are
used at each location
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formative pixels from being received. Through extensive

experiments, we have demonstrated that the proposed

method utilizes various filters at each location and im-

proves the network performance with a small parameter

overhead. In future works, we plan to apply the proposed

method to other image restoration tasks, enhance the per-

formance through structural improvement, and explore its

more efficient implementation methods.
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