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요 약

최근 VGGT를 비롯한 대규모 비전 트랜스포머 기반 모델들이 등장하며, 복잡한 3D 장면을 정밀하게 해석하는 기술이 발전하고 있
다. 그러나 이러한 발전은 주로 비압축 영상을 전제로 한 학습·평가에 기반하기 때문에, 실제 환경에서 흔히 사용되는 손실 압축 영상
의 영향을 충분히 고려하지 않는다. 손실 압축으로 발생하는 압축 아티팩트는 3D 비전 모델의 장면 해석 성능을 저하시킬 수 있다. 
본 논문에서는 대표적인 3D 장면 해석 모델인 VGGT를 대상으로, 압축 아티팩트가 추론 성능에 미치는 영향을 분석하여 실제 환경
적용 시의 안정성 확보에 기여하고자 한다. 이를 위해 CO3Dv2 데이터셋에서 9개의 카테고리를 선정하고 범용적으로 사용되는 이미
지 코덱인 JPEG과 비디오 코덱인 AVC를 사용하여 다양한 압축 강도로 데이터셋을 구성하여 추론 성능의 하락을 확인하였다. 이후
CO3Dv2 데이터셋의 모든 카테고리에서 압축 이미지와 노이즈 제거된 이미지를 Ground Truth와 비교하여 압축 강도 변화에 따른
VGGT 모델의 카메라 포즈, 깊이, 포인트 맵 추론 능력을 평가하였다. 그 결과 AVC 코덱은 QP 42 이상, JPEG은 Quality 20 이하부
터 성능 저하가 뚜렷하게 나타났다.

Abstract

Recent advancements in large-scale vision transformer models, including VGGT, have significantly improved the ability to 
interpret complex 3D scenes. However, most of these models are trained and evaluated using uncompressed data, overlooking the 
impact of lossy compression commonly present in real-world scenarios. Compression artifacts caused by lossy compression can 
degrade the scene understanding performance of 3D vision models. In this study, we investigate the impact of compression artifacts 
on VGGT, a representative model for 3D scene understanding, to assess its robustness in practical environments. We select nine 
categories from the CO3Dv2 dataset and apply various compression levels using commonly used codecs: JPEG for images and 
AVC for video. The model's performance is evaluated by comparing its camera pose estimation, depth estimation, and point map 
reconstruction accuracy against the original ground truth data. Experimental results indicate that degradation becomes noticeable 
when using AVC at QP ≥ 42 and JPEG at Quality ≤ 20. These findings suggest the importance of considering lossy 
compression distortion when deploying transformer-based 3D vision models in real-world applications.
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Ⅰ. 서 론

최근 VGGT (Visual Geometry Grounded Transformer) 
[1]와 같은 3D 비전 모델의 발전은 복잡한 현실 장면을 세밀

하게 재구성하고 이해하는 능력을 크게 향상시켰다. 
VGGT는 단일 이미지 입력만으로 카메라 파라미터, 깊이

맵 및 포인트 맵을 추론할 수 있는 모델로, 단순한 구조와

사전학습 된 신경망을 기반으로 3D 재구성 분야에서 현존

최고 수준의 성능을 보여준다. 그러나 현실적으로는 이러

한 모델을 실제 응용 (3D 객체 탐지, 장면 복원 등)에 적용

하기 위해서는 전송 대역폭의 한계, 저장공간의 부족, 실시

간 처리 속도 요구와 같은 제약을 직면하게 된다. 이러한

이유로, 손실 압축이 적용된 데이터를 입력으로 사용하는

경우가 일반적이다. 손실 압축은 주파수 도메인 변환 과정

에서 고주파 영역의 정보를 일부 포기하는 대신 비트 전송

률을 줄인다. 하지만 정보를 포기하면서 발생하는 압축 아

티팩트는 인간의 영상 인지에 영향을 줄 뿐만 아니라, 컴퓨

터 비전 모델의 장면 해석 정확도를 저하시키는 요인으로

작용할 가능성이 있다.
2D 비전 분야에서는 압축 아티팩트가 모델 성능에 미치는

영향을 다룬 연구[2,3]가 이루어져 왔으나, 3D 비전 분야에서

는 압축 강도와 모델 성능 간의 관계를 체계적으로 분석한

연구가 거의 없는 실정이다. 이러한 연구의 부재는 3D 비전

모델을 현실적으로 적용함에 있어, 압축 영상을 신뢰성 있게

활용하는데에위험요소로 작용한다. 예를들어, 네트워크 환

경으로 인해 압축된 이미지가 입력으로 사용될 경우, 모델이

예기치 못한 오차를 내거나 재구성 품질이 급격히 저하될 수

있다. 결국, 압축강도에따른 입력 이미지의 품질저하가 3D 
비전 모델의 성능에 미치는 영향을 명확히 규명하는 것이 본

연구에서 제안하는 압축 영상 입력 기반 3D 비전 모델의 활

용 가능성을 보장하는 핵심 과제이다.
본 연구에서는 현재 최고 수준의 성능 모델인 VGGT에

서 입력 이미지의 압축 강도의 변화 따른 성능 변화를 정성

적, 정량적으로 분석하였다. 이를 위해 CO3Dv2 데이터셋[4]

을 기반으로, 대표적 이미지 코덱인 JPEG[5]과 대표적 동영

상 코덱인 AVC (H.264)[7]에 대해 다양한 압축 강도로 구성

된 압축 이미지 데이터셋을 구성하여 압축으로 인한 성능

하락을 관찰하였다. 또한, HEVC, VVC로 압축된 검증용

데이터셋을 구성하였다. 검증용 압축 데이터셋에 대해 동

영상 기반 압축 노이즈 제거 모델 (STDF[29], RFDA[30], 그
리고 STFF[31])을 적용하여 노이즈 제거를 실시하였고, 압
축 영상 및 노이즈 제거된 영상의 VGGT 모델의 추론을

실시하여 평가를 실시하였다. 정성적, 정량적 결과를 시각

적 비교 및 포인트 맵의 포인트 수, Chamfer Distance[9], 
Area Under Curve (AUC)를 평가지표로 하여 압축 강도에

따른 VGGT 성능을 평가하였다. 전반적인 연구의 흐름은

그림 1과 같다.

Ⅱ. 관련 연구

1. 영상 압축 코덱

영상 압축 기술은 한정된 전송 대역폭과 저장공간을 효

율적으로 사용하기 위한 핵심 기술로, 이미지 기반 압축 기

법으로는 JPEG[5], JPEG2000[6], 동영상 기반 압축으로는

AVC[7], HEVC[8], VVC[26] 등 다양한 표준 손실 압축 코덱

이 널리 사용되고 있다. 그중이미지 압축에는 JPEG이, 동
영상 압축에는 HEVC가 가장 범용적으로 사용된다. 이러한

손실 압축은 주파수 도메인 변환 과정에서 고주파 영역의

정보를 일부 제거하는 방식으로 비트 전송률을 줄이는 방

식을 채택하였다. 부호화 과정에서블로킹, 링잉, 블러링등

의 압축 아티팩트[20]가 나타나게 되는데, 이는 인간의 영상

인지에는둔감히 반응하도록설계되었으나 영상 내의 지역
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를 해석하는 데 어려움을 주는 요인으로 작용한다.

2. 딥러닝 기반 노이즈 제거

노이즈 제거 (Denoising)는 이미지 품질 복원 분야에서

가장 오래 연구된 문제 중 하나로, 고전적인 필터링 기반

접근 방식에서 시작하여 현재는 딥러닝 기반 모델을 통한

노이즈 제거로 빠르게 발전해 왔다. 압축 아티팩트 제거는

일반적인 노이즈 제거보다 더 복잡한 구조적 노이즈를 다

루어야 하므로, 다양한 신경망 구조가 제안되었다. 초기딥

러닝 기반 복원 모델인 ARCNN[23]은 CNN을 활용해 픽셀

주변의 지역적인 패턴을 학습하였고, 이후 잔차 학습을 추

가한 DnCNN[24], U-Net 구조를 채택한 DRUNet[25]으로 발

전하였다.
최근의 신경망 구조의 이미지 노이즈 제거 연구에서는

트랜스포머 구조를 활용한 JDEC[14], PromptCIR[15] 등이 제

안되며, 장거리 의존성 학습을통한 전역적맥락 파악능력

을 활용해 반복적 패턴이나블록구조와 같은 압축 아티팩

트를 보다 정밀하게 제거하는 성능을 보이고 있다. 또한

Diffusion 기반 모델은 확률적 노이즈 과정을 모방해 이미지

를점진적으로 또는 단일 단계로 복원하는 방식으로 동작한

다. 특히 one-step Diffusion 모델은 기존 Diffusion 방식대

비복원속도를크게개선하면서복원품질을유지할수있어

CODiff[16], StableCodec[17], OSCAR[18], OSEDiff[19]와 같은

모델들이 주목받고 있다.
멀티 프레임 기반 노이즈 제거 연구에서는 MFQE[27]가

최초로 모션 보상 기반 프레임 정렬과, peak quality frame 
(PQF) 검출을통해 압축으로열화된프레임의 화질을 복원

하였다. 이후, 옵티컬 플로우를 대체하여 deformable con-
volution (DCN)[28]을 활용하여 인접프레임을 정렬및융합

하는 STDF[29] 모델이 제안되어 멀티 프레임 노이즈 제거

연구의 효율성을 끌어올렸다. 이후 RFDA[30]는 재귀적 융

합과, 어텐션 메커니즘을 통해 압축 아티팩트가 심한 영역

에 복원을 집중시키는 방식으로 기존 정렬 및융합의 한계

를 보완하였으며, 최근의 STFF[31] 모델은 정렬, 융합 축에

주파수 정보를 함께 결합하는 퓨전 방식으로 디테일 복원

능력을 강화하는 방향으로 발전하였다. 요컨대, 노이즈 제

거 및 압축 아티팩트 복원 기법은 충분히 축적되어 왔음에

도 불구하고, 압축 입력을 사용하는 3D 비전 모델에 대한

적용 가능성을 분석한 연구는 아직 제시되지 않았다. 본 연

구에서는 STDF, RFDA, STFF를 동영상 복원 기법으로 채

택하여 기존 연구의 공백을 해소하고자 한다.

3. 다중 시점 재구성

다중 시점 재구성 (Multi-view Stereo, MVS) 기법은 여

그림 1. 본논문에사용된전반적인프레임워크. 이미지, 동영상코덱기반의압축방법을사용하였으며, 각프레임은 VGGT의입력으로사용되어
추론 결과를 통해 포인트 맵, 카메라 포즈에 대한 결과를 도출
Fig. 1. Overall framework used in this paper. The input images are compressed using standard codecs: JPEG for images and 
AVC for videos. Each frame is fed into VGGT to infer point maps and camera poses.
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러 시점에서 촬영된 영상들로부터 기하학적 정보를 추측

하여 3차원 구조를 복원하는 기술이다. 초기의 연구들은

Structure-from-Motion (SfM)[21]과 같이 기하학적 최적화

기반 접근이 주류를 이루었으며, 영상 간의 대응점을 추출

하고 이를 활용해 기하학적 정보를 추론해 내는 방법을 사

용했다. 이후 DUSt3R[22]과 같이 트랜스포머 기반 신경망을

학습하여 복잡한 최적화 과정 없이도빠르게 다중시점간

의 기하학적 관계를빠르게 추론할 수 있는 방법으로 발전

해 왔다. 최근 제안된 VGGT[1]는 단일 이미지 입력만으로

도 빠르게 카메라 파라미터, 깊이, 포인트 맵을 예측할 수

있는 3D 비전 모델로, 현존 최고 성능을 보인다. 그러나, 
기존 제시된 모델의 한계점은 대부분 압축된 프레임을 고

려하지 않았으며, 대부분의 결과를 고품질 입력 영상을 전

제로 평가되었으므로 손실 압축으로 인한 입력 영상 품질

저하가 3D 재구성 성능에 미치는 영향에 대해서는 충분히

분석되지 않은 실정이다.

Ⅲ. 본 론

본 연구에서는 압축 영상이 VGGT 성능에 미치는 영

향을 분석 관점과 복원 적용 관점에서 구분하여 접근한

다. 먼저, 압축 강도가 3D 추론 성능에 미치는 영향을 정

밀하게 분석하기 위해, 압축 파라미터를 비교적 안정적

으로 제어할 수 있는 AVC 기반 압축을 분석용 기준으로

사용하였다. 이는 특정 코덱 구조나 참조 프레임 설정에

따른 영향을 최소화하고, 압축 강도 변화에 따른 성능 추

이를 관찰하기 위함이다. 영상 복원 실험에서는 실제 전

송 및 저장 환경에서 널리 사용되는 HEVC 및 VVC 코덱

을 적용하여, 복원 기법들이 표준 비디오 압축 환경에서

도 VGGT의 추론 성능을 개선할 수 있는지를 검증하였

다.

1. 실험 데이터셋 구성

데이터셋은 CO3Dv2 데이터셋에서 9개 카테고리를 선정

하여 정성적으로 신뢰도가높은 하나의 시퀀스를 선정하였

다. 압축은 JPEG과 AVC 및 HEVC, VVC 코덱을 사용하여

진행하였다. JPEG 압축은 python openCV 라이브러리를

사용하였고 Quality 값은 70, 50, 30, 20, 10으로 설정하였

다. AVC 코덱은 ffmpeg을 사용해서 이미지 형식을

yuv420p로 변환하여 하나의 시퀀스로 이어붙인뒤, QP를
27, 32, 37, 42, 47로 설정하여 압축 후 프레임을 추출하여

데이터셋을 구성하였다. 데이터셋 구성 과정은 그림 1에 시

각적으로 표현되어 있다. 평가를 위하여 HEVC, VVC를 각

각 All intra 모드에 대해 QP 27, 32, 37을통해 압축하였고, 
각각의 압축 프레임 결과를 STDF, RFDA, STFF를 통해

노이즈 제거된 프레임을 구성하였다.

2. 실험 환경 및 평가 방법

3.1에서 구성한 압축된 데이터셋으로 VGGT 모델을 사

용하여 NVIDIA RTX 3080 환경에서 실험하였다. 입력 영

상과 모델의 추론 성능 사이의 관계성을찾기 위해 정성적

평가로 포인트 맵 추정의 시각적 비교, 정량적 평가로 추론

된 포인트 맵의 포인트 수, Chamfer Distance와 Area Under 
Curve (AUC)를 사용하여 포인트 맵의 유사도와 카메라 포

즈 추론 능력을 정량적으로 평가하였다. 해당실험의 경우, 
각 프레임을 개별적으로 VGGT의 입력으로 사용하였다. 
Chamfer Distance와 AUC의 평가 기준으로 CO3Dv2 데이

터셋에서 제공하는 Ground truth (GT)를 사용하였다. 

Ⅳ. 실험 결과

1. 포인트 맵 추정

그림 2, 그리고 그림 3은 서로 다른 압축 강도의 이미지

를 입력으로 주었을 때 모델이 추론한 포인트 맵의 변화

시각화 결과이다. 추론이 완전히 실패한 경우가 아니라

면 대부분 중심 물체의 두드러지는 시각적 차이는 나타

나지 않았고, 배경에 대한 포인트 수가 감소하는 경향을

보였다. 그러나 AVC 코덱의 QP 42, 47에서 중심 물체의

포인트 예측에 대해서도 성능 저하가 나타났다. 이는 그

림 3 하단에서 확인할 수 있다. 각 카테고리별 압축 강도

에 따른 예측 포인트 맵은 그림 4에 나타나 있다. 
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그림 2. CO3Dv2 데이터셋의 plant 카테고리에 대한 VGGT의 포인트 맵 추론 후 시각화 결과
(위: JPEG Quality 70, 10, 아래: AVC QP 27, 47)
Fig. 2. Inferred point maps by VGGT for the Plant category on the CO3Dv2 dataset
(Top: JPEG Quality 70 (left) and 10 (right); Bottom: AVC QP 27 (left) and 47 (right))

그림 3. CO3Dv2 데이터셋의 backpack 카테고리에 대한 VGGT의 포인트 맵 추론 후 시각화 결과
(위: JPEG Quality 70, 10, 아래: AVC QP 27, 47)
Fig. 3. Inferred point maps by VGGT for the backpack category on the CO3Dv2 dataset
(Top: JPEG Quality 70 (left) and 10 (right); Bottom: AVC QP 27 (left) and 47 (right))
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2. 추정된 포인트 맵의 포인트 수

VGGT가 추론한 포인트 맵의 포인트 수를 확인한 결과, 
압축 강도에 따라 변화가 나타났다. 압축 강도가높아질수록

추론된 포인트 수가감소하는 경향을 보였다. 이는 부분적인

압축 아티팩트로 인해 특정픽셀에 대한 깊이 예측이 어려워

졌기 때문으로 보인다. 압축이 적용된프레임의 VGGT 추론

후 포인트 수의 변화는 표 1과 표 2에 제시하였다.

그림 4. 각 카테고리별 압축 강도에 따른 예측된 포인트 맵, 예측이 제대로 이루어지지 않은 장면은 공백 처리
Fig. 4. Inferred Point maps by VGGT for each category at different compression levels; scenes with failed predictions are left empty.

BACKPACK BALL BOOK CHAIR HANDBAG LAPTOP PLANT TEDDYBEAR VASE
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Methods Mean of number of points

RAW 26,615

JPEG

Q 70 25,235

Q 50 22,855

Q 30 20,013

Q 20 16,038

Q 10 15,356

표 1. VGGT의입력을 JPEG 압축된이미지로사용하였을때의압축강도에
따른 포인트 맵의 포인트 수 평균. 빨간 글씨는 하락이 가장 작은 구간이며, 
파란 글씨는 하락이 가장 큰 구간을 의미
Table 1. The mean of the number of points in the point map when 
JPEG-compressed images are used as input to VGGT. Red text in-
dicates the QF with the highest mean number of points, while blue 
text indicates the QF with the lowest mean number of points.

Methods Mean of number of points

RAW 26,615

AVC

QP 27 26,174

QP 32 24,492

QP 37 22,597

QP 42 20,149

QP 47 16,450

표 2. VGGT의 입력을 AVC 압축된 이미지로사용하였을때의압축 강도에
따른 포인트 맵의 포인트 수 평균. 빨간 글씨는 하락이 가장 작은 구간이며, 
파란 글씨는 하락이 가장 큰 압축 구간을 의미
Table 2. The mean of the number of points in the point map when 
AVC-compressed images are used as input to VGGT. Red text in-
dicates the QP with the highest mean number of points, while blue 
text indicates the QP with the lowest mean number of points.

3. 추정된 포인트 맵의 유사도

한 장의 이미지를 넣었을 때 VGGT 모델이 생성하는 포

인트 맵의 유사도를 평가하기 위해서 Chamfer Distance를
평가지표로 사용하였다. Chamfer Distance는 두 점 집합

의 차이를 측정하는 지표로 다음의 식으로 정

의된다: 
식 (1)은 차이가 작을수록두집합이 유사함을 의미한다. 

표 3, 4에서 볼 수 있듯이, 평균적으로 압축 강도가 강한

입력에 대해 Ground Truth와 차이가 있는 점 집합을

Methods Chamfer Distance

RAW 3.4801

JPEG

Q 70 3.4801

Q 50 3.5059

Q 30 3.5075

Q 20 3.5226

Q 10 3.5400

표 3. 이미지코덱압축데이터를 VGGT 입력으로사용했을때, 압축강도에
따른 Chamfer distance 평균. 빨간글씨는하락이가장적은구간이며, 파란
글씨는 하락이 가장 큰 압축 구간을 의미
Table 3. The mean of the chamfer distance in the point map when 
JPEG-compressed images are used as input to VGGT. Red text in-
dicates the QF with the highest mean chamfer distance, while blue 
text indicates the QF with the lowest mean of chamfer distance.

Methods Chamfer Distance

RAW 3.4801

AVC

QP 27 3.4721

QP 32 3.4923

QP 37 3.5279

QP 42 3.5615

QP 47 3.5884

표 4. 동영상코덱압축데이터를 VGGT 입력으로사용했을때, 압축강도에
따른 Chamfer distance 평균. 빨간글씨는하락이가장적은구간이며, 파란
글씨는 하락이 가장 큰 압축 구간을 의미
Table 4. The mean of chamfer distance in the point map when 
AVC-compressed images are used as input to VGGT. Red text in-
dicates the QP with the highest mean chamfer distance, while blue 
text indicates the QP with the lowest mean of chamfer distance.

 

생성하는 경향을 보였다. 그러나 일부 카테고리에 대해선

이와 반대되는 결과를 보이기도 하였다. Laptop 카테고리

의 경우엔 AVC QP 47, JPEG Quality 10과 같이 강한 압축

이 적용된 입력에서 Chamfer Distance가 오히려 감소했다. 
이는 VGGT를 포함한 3D 장면을 추론하는 모델이 유리나

거울같이빛이 반사되는 입력이 들어왔을 때 반사된 영역에

대한 깊이를 정확하게 예측하지 못하는한계[9,10] 때문으로해

석된다. 그림 5에서 보이듯 Laptop 카테고리는 노트북화면

이나책상에물체가 반사되는 입력이 존재하여 저품질 포인

트 맵을 추론한 것이 확인되었다. GT가 추론한 포인트 맵의

(1)
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포인트수를확인한결과, 압축강도에따라변화가나타났다. 
압축 강도가높아질수록추론된 포인트 수가감소하는 경향

을보였다. 이는부분적인 압축 아티팩트로 인해 특정픽셀에

대한 깊이 예측이 어려워졌기 때문으로 보인다. 

4. 카메라 포즈 추정

VGGT가 추론한 카메라 포즈의 정확도를 평가하기 위해

Area Under the curve lower than a fixed threshold (AUC@
θ) 평가지표를 활용하였으며 AUC@30, 15, 5, 3을 사용하

였다. 해당 평가에 대한 식은 아래의 식으로 나타낼 수 있

다. 

(2)

예측된 카메라 포즈가 GT 포즈와의 오차( )가  이하일

때 정답으로 간주되는 비율을 의미한다. 는 평가 기준의

엄격함을 의미하고 작을수록 엄격한 기준을 적용한다. 또
한 AUC 값이 클수록 카메라 포즈 예측이 기준을 통과한

비율이높음을 의미한다. 압축 강도에 따른 카메라 포즈 예

측 AUC는 표 5, 6을 통하여 보고한다.
표 5, 그리고 6에서 확인할 수 있듯이 압축 영상의 경우, 

압축 강도가 커질수록 카메라 포즈 예측 성능이 전반적으

로 저하되는 경향을 보였다. 반면, 표 7에 나타낸 평균

PSNR 저하가 AVC보다 JPEG에서 더 컸음에도 불구하고

JPEG 코덱에서는 AUC@30 및 AUC@15 기준에서 압축

Methods AUC@30 
(↑)

AUC@15
(↑)

AUC@5
(↑)

AUC@3
(↑)

RAW 0.9745 0.8153 0.7327 0.6624

JPEG

Q 70 0.9749 0.8155 0.7314 0.6603 

Q 50 0.9756 0.8173 0.7365 0.6656 

Q 30 0.9732 0.8135 0.7257 0.6540 

Q 20 0.9716 0.8131 0.7168 0.6402 

Q 10 0.9679 0.8078 0.7054 0.6212 

표 5. VGGT의입력을 JPEG 압축된이미지로사용하였을때의압축강도에
따른 AUC 평가의변화와평균. 빨간글씨는하락이가장작은구간이며, 파란
글씨는 하락이 가장 큰 구간을 의미
Table 5. The mean of AUC when JPEG-compressed images are used 
as input to VGGT. Red text indicates the QF with the highest mean 
of AUC, while blue text indicates the QF with the lowest mean of AUC.

Methods AUC@30 
(↑)

AUC@15
(↑)

AUC@5
(↑)

AUC@3
(↑)

RAW 0.9745 0.8153 0.7327 0.6624

AVC

QP 27 0.9604 0.7941 0.6806 0.6032 

QP 32 0.9576 0.7920 0.6698 0.5862 

QP 37 0.9509 0.7788 0.6368 0.5386 

QP 42 0.9405 0.7655 0.6076 0.5111 

QP 47 0.9210 0.7312 0.5441 0.4370 

표 6. VGGT의입력을 AVC 압축된이미지로사용하였을 때의압축강도에
따른 AUC 평가의변화와평균. 빨간글씨는하락이가장작은구간이며, 파란
글씨는 하락이 가장 큰 구간을 의미
Table 6. The mean of AUC when AVC-compressed images are used 
as input to VGGT. Red text indicates the QP with the highest mean 
of AUC, while blue text indicates the QP with the lowest mean of AUC.

그림 5. Laptop 이미지와 이에 대한 포인트 맵 추론 결과 (순서대로 입력 이미지, 포인트 맵 상단 시점, 옆면 시점)
Fig. 5. Input images of the Laptop category and the corresponding point maps inferred by VGGT (from left to right: input image, top-view 
of the point map, and side-view of the point map)
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Codec Compression Level PSNR↑

AVC

QP 27 38.49
QP 32 36.35
QP 37 34.04
QP 42 31.56
QP 47 28.68

JPEG

Quality 70 47.33
Quality 50 40.46
Quality 30 38.50
Quality 20 35.95
Quality 10 31.59

표 7. 입력 이미지의 압축 강도에 따른 PSNR 평균
Table 7. Average PSNR as a function of compression level of input 
image

  

강도의 변화가 예측 성능에 유의미한 영향을 주지 않았다.
즉, JPEG 코덱에서는 압축이 강해져도 대략적인 카메라 포

즈를 비교적 정확히 예측했다고 볼 수 있다. 이는 JPEG의

세부적인 디테일을 저하시키면서 압축하는 방식이 이미지

를 전역적으로 해석하는 Vision Transformer[12,13] 기반의

VGGT에서는큰영향을 주지 않은 것으로 추정된다. 한편, 

Laptop 카테고리의 경우임계값( )과 압축 강도에 관계 없

이 카메라 포즈 추정이 안정적으로 이루어지지 않았다. 이
는 앞서 언급한 반사에 의한 시각적 왜곡이 모델의 카메라

포즈 추론 과정에 영향을 준 것으로 보인다. 전반적인 연구

의 결과, AVC에서 QP 증가에 따라 성능 저하가누적되며, 
특히높은 QP 구간에서 포인트 수감소와 AUC 하락이더

두드러지는 경향을 보였다 (그림 6).

5. 노이즈 제거 모델 활용 연구 결과

본절에서는 압축 영상 입력 환경에서의 3D 비전 모델성

능 변화를 분석하기 위해, CO3Dv2 데이터셋의 모든 카테

고리에 대해 1개씩의 대표 씬을 HEVC, VVC를 각각 QP 
27, 32, 37을 적용하여 압축 테스트 데이터셋을 구성하였

다. 이후, 대표적 멀티 프레임 기반 노이즈 제거 모델인

STDF, RFDA, STFF를 활용하여 부호화 영상의 압축 아티

팩트를감소시킨뒤, 해당 프레임들을 VGGT 모델의 입력

으로 사용하여 카메라 포즈 예측 결과인 AUC@30, 
AUC@15, AUC@5, AUC@3, 그리고 포인트 맵의 예측결

그림 6. AVC 압축을 이용한 VGGT의 추론 성능 변화의 추이. 대표 9개 카테고리에 대해 RAW 및 AVC (QP 27, 32, 37, 42 ,47) 입력을 사용하여 평균
포인트개수, Chamfer distance, AUC@30, 그리고 AUC@15의변화를나타낸다. 표의내용과같이강한압축이수반될경우, (QP 42 ~ 47구간) 성능하락의
폭이 더 커지는 것을 확인할 수 있다. 
Fig. 6. Trends in VGGT inference performance under AVC compression. For nine representative categories, changes in the mean number of 
points, Chamfer Distance, AUC@30, and AUC@15 are shown using RAW and AVC inputs (QP 27, 32, 37, 42, and 47). Stronger compression 
(QP 42-47) leads to larger performance degradation.
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Method
Camera pose estimation Point map estimation

AUC@30 (↑) AUC@15 (↑) AUC@5 (↑) AUC@3 (↑) Accuracy (↓) Completeness 
(↓)

Chamfer 
Distance (↓)

RAW 0.8878 0.8232 0.6713 0.5742 0.1674 1.2470 0.7072
Compressed

(HEVC, QP 27) 0.8391 0.7380 0.5089 0.3824 0.1686 1.2473 0.7080

STDF 0.8358 0.7497 0.5388 0.4155 0.1627 1.2480 0.7053
RFDA 0.8258 0.7187 0.4792 0.3547 0.1689 1.2380 0.7035
STFF 0.8252 0.7148 0.4710 0.3383 0.1700 1.2376 0.7038

표 8. HEVC 코덱의 QP 27 압축 프레임 및 노이즈 제거 모델에 대한 카메라 포즈 예측, 포인트 맵 예측 결과. 빨간색은 RAW에 대한 VGGT 추론 결과를
제외한 최고 성능을 의미
Table 8. Camera Pose estimation and point map prediction results for HEVC-compressed frames at QP 27 and for the denoising model. Red 
indicates the best performance excluding VGGT inference result on RAW input.

Method
Camera pose estimation Point map estimation

AUC@30 (↑) AUC@15 (↑) AUC@5 (↑) AUC@3 (↑) Accuracy (↓) Completeness 
(↓)

Chamfer 
Distance (↓)

RAW 0.8878 0.8232 0.6713 0.5742 0.1674 1.2470 0.7072
Compressed

(HEVC, QP 32) 0.8725 0.7853 0.5808 0.4587 0.1604 1.2789 0.7197

STDF 0.8669 0.7809 0.5851 0.4704 0.1559 1.2786 0.7172
RFDA 0.8640 0.7756 0.5773 0.4618 0.1609 1.2770 0.7189
STFF 0.8628 0.7722 0.5696 0.4536 0.1608 1.2773 0.7190

표 9. HEVC 코덱의 QP 32 압축 프레임 및 노이즈 제거 모델에 대한 카메라 포즈 예측, 포인트 맵 예측 결과. 빨간색은 RAW에 대한 VGGT 추론 결과를
제외한 최고 성능을 의미
Table 9. Camera Pose estimation and point map prediction results for HEVC-compressed frames at QP 32 and for the denoising model. Red 
indicates the best performance excluding VGGT inference result on RAW input.

Method
Camera pose estimation Point map estimation

AUC@30 (↑) AUC@15 (↑) AUC@5 (↑) AUC@3 (↑) Accuracy (↓) Completeness 
(↓)

Chamfer 
Distance (↓)

RAW 0.8878 0.8232 0.6713 0.5742 0.1674 1.2470 0.7072
Compressed

(HEVC, QP 37) 0.8368 0.7412 0.5160 0.3898 0.1526 1.3131 0.7328

STDF 0.8414 0.7417 0.5086 0.3834 0.1493 1.3050 0.7271
RFDA 0.8506 0.7559 0.5281 0.4060 0.1552 1.3030 0.7291
STFF 0.8430 0.7538 0.5482 0.4322 0.1561 1.3055 0.7308

표 10. HEVC 코덱의 QP 37 압축 프레임 및 노이즈 제거 모델에 대한 카메라 포즈 예측, 포인트 맵 예측 결과. 빨간색은 RAW에 대한 VGGT 추론 결과를
제외한 최고 성능을 의미
Table 10. Camera Pose estimation and point map prediction results for HEVC-compressed frames at QP 37 and for the denoising model. Red 
indicates the best performance excluding VGGT inference result on RAW input.

Method
Camera pose estimation Point map estimation

AUC@30 (↑) AUC@15 (↑) AUC@5 (↑) AUC@3 (↑) Accuracy (↓) Completeness 
(↓)

Chamfer 
Distance (↓)

RAW 0.8878 0.8232 0.6713 0.5742 0.1674 1.2470 0.7072
Compressed

(VVC, QP 27) 0.8558 0.7658 0.5461 0.4246 0.1694 1.2468 0.7081

STDF 0.8562 0.7695 0.5673 0.4455 0.1625 1.2445 0.7035
RFDA 0.8434 0.7441 0.5156 0.3933 0.1683 1.2419 0.7051
STFF 0.8396 0.7387 0.5051 0.3785 0.1682 1.2397 0.7039

표 11. VVC 코덱의 QP 27 압축 프레임 및 노이즈 제거 모델에 대한 카메라 포즈 예측, 포인트 맵 예측 결과. 빨간색은 RAW에 대한 VGGT 추론 결과를
제외한 최고 성능을 의미
Table 11. Camera Pose estimation and point map prediction results for VVC-compressed frames at QP 27 and for the denoising model. Red 
indicates the best performance excluding VGGT inference result on RAW input.
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과인 accuracy, completeness, chamfer distance에 대한 결

과를 표 8-13에서 보고한다. 각각의 QP에 맞게 MFQEv2 
데이터셋으로 기 학습된 가중치를 활용하여 노이즈 제거

모델의 추론 결과를 활용하였다. 
적용 결과, HEVC, VVC에서도 압축 강도가 증가할수록

예측성능이 일관되게 저하되는 경향을 보임을알수 있다. 
노이즈 제거 모델을 적용한 경우, HEVC 압축 데이터에 대

해서는 (표 8-10) STDF가 낮은 강도의 QP 설정에서 카메

라 포즈 추정과 포인트 맵 정확도 측면에서 가장 안정적인

성능 향상 기여를 보였으며, 높은 압축 강도에서는 STFF 
모델이 카메라 포즈 예측에서의 가장 높은 향상도를 달성

하였다. VVC 압축 데이터에 대해서는 (표 11-13) 낮은 압

축 강도에 대해서는 STDF가 비교적 카메라 포즈 및 포인

트 맵 예측 성능에서높은 회복세를 이루는 결과를 확인할

수 있었다. 

Ⅴ. 결 론

본 연구에서는 CO3Dv2 기반 데이터셋에 JPEG과 AVC 코
덱을 적용하여 다양한 압축 강도의 데이터셋을 구성하고, 
VGGT의 성능 변화를 분석하였다. 정량적으로, 압축 강도

가 높아질수록 추정된 포인트 수 감소, 추론된 포인트 맵

유사도 저하를 확인할 수 있었다. 카메라 포즈 예측은 AVC
는 모든임계값에서 성능 저하가 나타났다. 특히, AVC 코
덱은 QP 42 이상, JPEG은 Quality 20 이하부터 성능 저하

가 급격히 발생하였다. 정성적 평가에서도 예측 성능 저하

를 확인할 수 있었다. 이로써, 압축 유무를 확인하지 않고

기존 3D 비전 모델의 입력으로 활용할 경우 성능의 하락을

피할 수 없음을 확인할 수 있었다. 본 결과는 강한 압축 환

경에서도 강건한 3D 재구성 모델설계필요성을 시사한다. 
노이즈 제거 모델을 거친이미지의 VGGT 추론 결과, 현존

Method
Camera pose estimation Point map estimation

AUC@30 (↑) AUC@15 (↑) AUC@5 (↑) AUC@3 (↑) Accuracy (↓) Completeness 
(↓)

Chamfer 
Distance (↓)

RAW 0.8878 0.8232 0.6713 0.5742 0.1674 1.2470 0.7072
Compressed

(VVC, QP 32) 0.8697 0.7868 0.5940 0.4794 0.1612 1.2795 0.7203

STDF 0.8655 0.7814 0.5921 0.4780 0.1557 1.2810 0.7184
RFDA 0.8669 0.7817 0.5873 0.4748 0.1604 1.2789 0.7196
STFF 0.8624 0.7740 0.5766 0.4579 0.1611 1.2778 0.7195

표 12. VVC 코덱의 QP 32 압축 프레임 및 노이즈 제거 모델에 대한 카메라 포즈 예측, 포인트 맵 예측 결과. 빨간색은 RAW에 대한 VGGT 추론 결과를
제외한 최고 성능을 의미
Table 12. Camera Pose estimation and point map prediction results for VVC-compressed frames at QP 32 and for the denoising model. Red 
indicates the best performance excluding VGGT inference result on RAW input.

Methods
Camera pose estimation Point map estimation

AUC@30 (↑) AUC@15 (↑) AUC@5 (↑) AUC@3 (↑) Accuracy (↓) Completeness 
(↓)

Chamfer 
Distance (↓)

RAW 0.8878 0.8232 0.6713 0.5742 0.1674 1.2470 0.7072
Compressed

(VVC, QP 37) 0.8440 0.7494 0.5247 0.3984 0.1548 1.3071 0.7309

STDF 0.8481 0.7523 0.5277 0.4060 0.1502 1.3019 0.7261
RFDA 0.8459 0.7577 0.5474 0.4250 0.1560 1.3025 0.7292
STFF 0.8388 0.7519 0.5426 0.4279 0.1572 1.2996 0.7284

표 13. VVC 코덱의 QP 37 압축 프레임 및 노이즈 제거 모델에 대한 카메라 포즈 예측, 포인트 맵 예측 결과. 빨간색은 RAW에 대한 VGGT 추론 결과를
제외한 최고 성능을 의미
Table 13. Camera Pose estimation and point map prediction results for VVC-compressed frames at QP 37 and for the denoising model. Red 
indicates the best performance excluding VGGT inference result on RAW input.
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하는멀티프레임 노이즈 제거 모델을 활용할 경우 카메라

포즈 예측 및 포인트 맵 예측에 대한 보완이 가능함을 알

수 있었다. 향후 연구에서는 압축된 영상에 앞서 언급하였

으나 활용되지 않은 노이즈 제거 모델[14-19]을 적용해 데이

터셋을 확장하여 구축하고, 확장된 데이터셋을 활용하여

다양한 3D 비전 모델의 성능을 분석할 예정이다.
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