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요 약

로보틱스, 웨어러블 디바이스, 확장현실/가상현실(AR/VR)의 확산으로 3차원(3D) 공간을 배경으로 사용자와 상호작용하며 미디어 서
비스를 제공하는 공간 미디어에 대한 관심이 높아지고 있다. 공간 미디어에서는 사용자의 위치와 행동이 주변 공간의 구조 정보와 통
합되며, 인공지능 모델이 공간에 대한 설명, 질의응답, 콘텐츠 생성 등과 같은 서비스를 제공하는 새로운 미디어 패러다임을 제공하는
것이 가능하다. 본 논문은 이러한 공간 미디어 응용의 핵심적인 기술이 되는 언어 생성 기반 3D 장면 이해를 중심으로 관련 연구를
체계적으로 정리한다. 먼저 대표적 데이터셋과 3D 장면 이해에서의 언어 생성 태스크를 정의하고, 최신 방법들을 단일 과제 학습과
다중 과제 학습으로 분류하여 정리한다. 이어서 최신 모델들의 성능을 비교 및 평가하고, 마지막으로 기존 연구의 한계를 논의하며 향
후 연구 방향을 제시한다. 

Abstract

The rapid growth of robotics, wearable devices, and augmented reality/virtual reality (AR/VR) has garnered attention of spatial 
media, in which a user can naturally interact with their three-dimensional (3D) environments and media services. This paper 
provides a comprehensive review of recent research on language generation–based 3D scene understanding, which is crucial for 
such agents. We first introduce representative datasets and define key language-generation tasks in 3D scene understanding. We 
then survey existing methods categorized into single-task and multi-task learning approaches. Next, we compare and evaluate 
state-of-the-art models on standard benchmarks. Finally, we discuss current limitations and outline promising directions for future 
research.
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Ⅰ. 서 론

로보틱스, 웨어러블 디바이스, 확장현실/가상현실(AR/ 
VR)의 확산과 함께공간미디어 기술에 대한 관심도 높아
지고 있다. 공간 미디어는 사용자가 주변 3차원(3D) 공간
상에서 위치하고 이동하는 상황에서, 사용자와 주변 환경
의이해를바탕으로설명, 질의응답, 내비게이션, 콘텐츠생
성과 같은 능동적 서비스를 제공하는 새로운 패러다임을

포함한다. 이를 위해인공지능모델및 에이전트는 사용자
및 주변 환경 모두와 상호작용할 수 있도록 가상적 또는

물리적형태로구현될 수있다[1]. 공간미디어 서비스를제
공하기위해서는단순한공간의인식을넘어 3차원상의복
잡한 구조, 객체들의속성과공간적관계를 종합적으로파
악하는 3D 장면 이해(3D Scene Understanding)가 필수적
이다. 또한사용자–에이전트상호작용을위해서는언어입
력을 이해하고 적절한 응답을 생성하는 능력도 중요하다. 
예를 들어 XR 환경에서의 실시간 장면 설명, 웨어러블 기
반의상황인지형어시스턴트, 로봇의언어기반공간조작
및경로계획등모두 3D 장면이해와언어이해기반생성
을 핵심 구성으로 한다. 
최근대형언어모델(LLM)과멀티모달모델의발전으로
언어기반시각이해가크게향상되었다. 대형언어모델의

풍부한 언어 지식과 추론 능력을 계승한 멀티모달 모델은

시각적추론과 언어 이해 능력이 함께 향상되면서, 다양한
멀티모달태스크를수행할수있게되었고, 언어쿼리에대
해더욱세밀하고정확한응답생성이가능해졌다[2-6]. 그러
나기존멀티모달모델은주로 2D 시각데이터에집중되어
왔기때문에 2D와달리더복잡한 3D 공간구조와 2D 픽셀
표현–3D 표현간불일치로인해깊이·거리등공간적특성
을정밀하게이해하는데어려움이존재한다. 이로인해실
제 3D 환경에의 직접적 적용에는 한계가 있었다. 이러한
한계를극복하기위해, 3D 장면표현을처리하는비전모델
과언어모델을결합하여 3차원공간에대한심층적이해와
언어적 추론 능력을 동시에 향상시키기 위한 연구가 활발

히 진행되고 있다. 본 논문은 사용자 입력에 따라 적절한
자연어응답을생성할수있는언어생성기반 3D 장면이
해 기술을중심으로 공간 미디어관련연구를조사하고분

석하고자 한다.

Ⅱ. 언어 생성 기반 3D 장면 이해 태스크
정의

본 장에서는 3D 장면과 자연어의 결합이 3D 장면 이해

그림 1. 3D 장면 캡셔닝과 고밀도 캡셔닝 예시
Fig. 1. Illustration of 3D Scene Captioning and Dense Captioning Tasks
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와 추론을 요구하는 다양한 과제 중 자연어 응답 생성을

목표로 하는 3D 질의응답과 3D 캡셔닝을 중심으로 문제
정의를 제시한다.

1. 언어 생성 기반 태스크

1.1 3D 캡셔닝(3D Captioning)
3D 캡셔닝은 3D 장면에 나타나는 물리적, 시각적 정보
를자연어로설명하는것을목표로한다. 이는전체장면에
대한전역적장면정보와주요객체, 그리고객체들사이의
관계를설명하여장면수준의 3D 장면이해를요구하는 3D 
장면캡셔닝(3D Scene Captioning)과, 장면내감지된모든
객체에 대해 개별적인 자연어 설명을 생성하는 객체 수준

의 3D 장면 이해를 요구하는 3D 고밀도 캡셔닝(3D Dense 
Captioning)으로 구분된다[7,8]. 그림 1은 ScanNet[11] 데이터
셋을사용한 각캡셔닝 태스크의입력과 출력에대한예시

를 나타내며, 3D 고밀도 캡셔닝의 경우, 일부 캡션만 제시
하였다. 

1.2 3D 질의응답(3D Question Answering, 3D QA)
3D 질의응답은 3D 장면에 대한 심층적인 이해와 추론

능력을 바탕으로, 장면 내 공간적 관계와 객체의 속성 등
다양한 질문에 대해 자연어로 적절한 답변을 생성하는 과

제이다. 본 과제는 전역적 관점에서 전체장면을대상으로
주어진 질문에 응답하는 3D 시각적 질의응답(3D Visual 
Question Answering, 3D VQA)[9]과, 언어로제공되는상황
설명과질문을입력으로받아 1인칭시점의답변을생성하
는 3D 상황적 질의응답(3D Situated Question Answering, 
3D SQA)[10]으로구분된다. 3D 상황적질의응답은답변생성
과함께선택적으로에이전트의위치, 시야, 방향정보를예측
하여 출력한다. 그림 2는 ScanNet[11] 데이터셋을 사용한 각
태스크의입력과출력예시를나타낸다. 그림 1과그림 2에서
볼 수 있듯이, 3D 캡셔닝은 질문 입력 없이 장면 정보만을
입력으로 사용하는 반면, 3D 질의응답은 질문 또는 질문과
상황적 설명을 함께 입력으로 받는 구조를 따른다.

Ⅲ. 3D 멀티모달 데이터셋

본 장에서는 3D 장면 이해 및 추론에 사용되는 다양한
3D 멀티모달 데이터셋의 구성과 특성을 정리하였다. 표 1
은언어생성기반 3D 장면이해에사용되는주요데이터셋

그림 2. 3D 시각적 질의응답과 상화적 질의응답 예시
Fig. 2. Illustration of 3D Visual Question Answering and Situated Question Answering



44 방송공학회논문지 제31권 제1호, 2026년 1월 (JBE Vol.31, No.1, January 2026)

들의 구성과 태스크 범위를 비교하여 나타내었다.
ScanNet 기반데이터셋으로는 3D 고밀도캡셔닝을위한

Scan2Cap과 3D 객체 참조 태스크를 다루는 Nr3D가 있으
며, 이들은객체수준의언어표현학습에초점을두고주로
3D 고밀도캡셔닝및객체참조태스크의벤치마크데이터
셋으로 활용된다. 반면 ScanQA와 SQA3D는 질문–응답
형식의데이터셋으로, 전자는장면전반에대한 3D 시각적
질의응답을 다루며, 후자는 에이전트 중심의 상황 인지와
공간 추론을 요구하는 3D 상황적 질의응답 태스크를포함
한다.

MSQA(Multi-modal Situated Question Answering)는 기
존의 3D 질의응답데이터셋이주로텍스트기반의상황설
명에의존하여시각정보를질의해석을 위한 입력으로명

시적으로활용하지 못하는한계를보완하고자제안되었다. 
실제실내 3D 장면을기반으로텍스트, 이미지, 3D 포인트
클라우드를 결합한 인터리브 입력 형식을 도입하고, LLM 
기반 질문–응답생성을 통해 약 251,000개의대규모 situ-
ated QA 쌍을구축함으로써, 보다정밀한상황인지와복합
적인 3D 추론 능력의 학습 및 평가를 가능하게 한다. 
한편, 다양한 3D 태스크를포괄하는대규모다중태스크
데이터셋도 제안되었다. LEO는 ScanNet, 3RScan, Obja- 
verse 등 다양한 소스 데이터셋으로부터 수집된 3D–텍스
트 쌍을 기반으로 객체(object), 장면에서의 객체(object-in- 
scene), 장면(scene) 수준의 다중 표현을 제공하며, 캡셔닝, 

질의응답, 내비게이션 등 광범위한 태스크를 지원한다.

Ⅳ. 언어 생성 기반 3D 장면 이해의 최신
연구 동향

본 장에서는 언어 생성 기반 3D 장면 이해의 최신 연구
동향을 다룬다. 먼저 포인트 클라우드와 복셀 그리드처럼
3D 기하학적 형태와 규모정보를 명시적으로표현하는방
식, 그리고다중시점이미지와카메라정보를활용하는다
중시점기반표현등주요 3D 장면표현방법을살펴본다. 
이어서언어생성기반 3D 장면이해연구를단일과제학
습과 다중 과제 학습 기법으로 분류하여 체계적으로 설명

하고자 한다. 

1. 3D 장면 표현

1.1 포인트 클라우드(Point Cloud)
포인트클라우드는 3D 장면이나물체의기본표면을 3D 
공간의 점집합으로 나타낸다. 이러한 집합은 xyz 좌표 위
치를 저장하며, 선택적으로 색상, 강도, 표면 법선과 같은
정보를포함할 수 있다. 포인트클라우드는 가볍고직관적
이지만, 무질서하고 구조화되지 않은 특성으로 인해 딥러
닝을 활용할 때 어려움이 있다[18,19]. 

Datatset Source Scene Objects Data Pairs Task
Scan2Cap[8] ScanNet[11] 800 11,046 51,583 3D dense captioning

Nr3D[12] ScanNet[11] 707 4,664 32,919 3D object grounding

ScanQA[9] ScanNet[11] 800 - 41,363Q, 
58,191A VQA

SQA3D[10] ScanNet[11] 650 - 20,400Q,
33,400A Situated VQA

LEO[13]
ScanNet[11], 
3RScan[14], 

Objaverse[15]
3000 - 83,000

Multi-task
(Scene captioning,

3D object captioning
3D QA,

Embodied Navigation
etc.)

MSQA[16]
ScanNet[11], 
3RScan[14], 

ARKitScenes[17] 
- - 251,000 Situated VQA

표 1. 3D 멀티모달 데이터셋
Table 1. 3D Multi-modal Datasets
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1.2 복셀 그리드(Voxel Grid)
연속적이고 불규칙한 기하학적 데이터(예: 포인트 클라
우드)를 이산 격자로 변환해 얻은 구조화된 표현이다. 3차
원 격자의 각 셀을 복셀(voxel)이라 하며, 각 복셀에는 색
상·밀도·의미(semantic) 등의 속성을 저장할 수 있어 정밀
한 볼류메트릭 표현이 가능하다[19,20]. 구조화된 격자를 사
용하므로 개념과 구현이 단순하다는 장점이 있으나, 장면
의 점유 영역뿐 아니라 비점유 영역까지 동일하게 표현하

므로 메모리 효율이 떨어진다는 문제점이 있다[21]. 

1.3 다중 시점 이미지(Multi-view image) 
다중 시점 이미지는 서로 다른 위치와 방향에서 촬영된

영상으로부터 3D 객체나 장면을 표현한다. 이미지 기반이
므로풍부한의미적특성을추출할수있으며, 2D 멀티모달
모델을직접적용해베이스모델의언어이해및추론능력

을활용할수있다. 또한다중시점이미지와카메라파라미
터를이용해장면을 Neural Radiance Field(NeRF)[22]나 3D 
Gaussian Splatting(3DGS)[23]과 같은 3D 표현으로 재구성
할 수 있다. NeRF[22]는 3D 장면을 신경망에 인코딩하여, 
3D 공간 좌표와 시야 방향을 입력으로 각 지점의 색상과
밀도를예측하는방식이다. 반면 3DGS[23]는장면을가우시

안들의 집합으로 명시적으로 표현하며, 각 가우시안은 공
간적 위치, 크기, 방향, 색상 등의 매개변수를 포함해 장면
의 기하와 외관을 효율적으로 근사한다. 이러한명시적표
현으로인해 3DGS[23]는 NeRF[22]에비해학습및렌더링이

빠르고, 실시간 뷰 합성이 가능하다는 장점이 있다.

2. 단일 태스크 학습 기법(Single-task Learning)

2.1 3D 고밀도 캡셔닝(3D Dense Captioning)
Scan2Cap[8]은 3D 고밀도 캡셔닝의 선도 연구로서, 장면
내에서검출된객체와객체간관계를그래프구조로표현하

여학습한뒤, GRU 기반의맥락인지형어텐션캡셔닝모듈
을 통해 객체별 설명을 생성한다. 이후 제안된 MORE[24]는

Scan2Cap[8]을확장하여다차수(multi-order) 관계를점진적
으로 그래프에 인코딩함으로써, 보다 복잡하고 풍부한 객
체 간 공간적 상호작용을 정교하게 포착한다. 한편, 
Scan2Cap[8]과 MORE[24]가 그래프를 통해 객체 관계를 모

델링한것과달리, SpaCap3D[25]는트랜스포머기반인코더

–디코더구조를도입하여객체를토큰으로표현하고, 토큰
간 공간 관계 학습과 객체 중심 디코더를 통해 공간성이

강화된 객체 설명을 생성한다. 또한 X-Trans2Cap[26]은 관

계모델링대신 2D-3D 정보융합에초점을맞추어, 텍스처
나 색상등풍부한 2D 정보를 3D 포인트클라우드에효과
적으로 전달하기 위한 교차 모달 교사-학생(teacher–stu-
dent) 프레임워크를제안한다. 여기서교사모델과학생모
델의 트랜스포머디코더 피처를 정렬하고, 생성된 객체 설
명간의교차엔트로피(Cross-Entropy) 손실을통해학습을
수행한다.
앞선 연구들은 별도의 객체 검출 모델을 사용하여 후보

객체를 먼저 예측한 뒤, 그 후보에 대한 설명을 생성하는
방식은모델의 검출 성능에대한의존성이 높아 오류 누적

의 문제가발생할 수있다. 이를 해결하기위해 Vote2Cap- 

그림 3. 3D 장면 표현의 시각화
Fig. 3. Visualization of 3D scene representations
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DETR[27] 및 Vote2Cap-DETR++[28]는 객체 위치예측과 설

명 생성을 동시에 처리하는트랜스포머 기반의 end-to-end 
프레임워크를 제안한다. 두 모델은 투표 기반으로 생성된
후보 객체 쿼리를 통해 트랜스포머 디코더가 두 태스크에

대한 예측을 동시에 수행한다. 기존 Vote2Cap-DETR[27]은

두 태스크가 요구하는 표현 수준이 상이함에도 불구하고

단일 객체 쿼리를 공유하여 처리함으로써 태스크 특화 표

현 학습에 한계가 있었다. 이를 보완하기 위해 Vote2Cap- 
DETR++[28]는 쿼리를 위치 예측 쿼리와 설명 쿼리로 분리

하여 각 태스크에 특화된 표현 학습을 가능하게 한다.
 
2.2 3D 질의응답(3D Question Answering, 3D QA)
ScanQA[9]는 트랜스포머 기반 프레임워크에서 3D 포인
트 클라우드 표현을 언어 임베딩을 융합하고, 통합 특징을
객체분류, 정답 분류, 객체 위치추정모듈에 각각 전달하
여 3D VQA를 수행한다. SQA3D[10]는 3D SQA를 위해
ScanQA[9]의구조에서에이전트의위치와방향을예측하는

보조작업(auxiliary tasks)을추가하여확장하였다. 두모델
모두후보답변들 사이에서선택하는정답분류접근을사

용한다. 한편, ScanQA[9]와 SQA3D[10]처럼 3D 포인트 클라
우드 특징에 기반한 방식과 달리 2D 정보와 사전 학습된
2D VLM의 지식을 활용한 접근 방식도 제안되었다.

BridgeQA[29]는 3D 데이터 규모와 다양성의 부족으로
3D-VQA의 일반화가 제한되는 문제를 해결하고자 2D와
3D 정보를통합하는방식을도입한다. 질문에연관된핵심
2D 뷰를선별하고, 선정된 핵심이미지와 3D 포인트 클라
우드를트윈트랜스포머(Twin-Transformer)로각각처리하
여, 사전 학습된 2D VLM 지식을 보존하면서 2D와 3D의
시각적 맥락을 융합한다. 마지막 단계에서 사전 학습된

VLM의언어디코더를 활용해자유형식의답변을 생성함
으로써 향상된 언어 능력을 달성한다.

SplatTalk[30]는 포인트 클라우드와 같은 별도의 3D 감독
신호없이다중시점이미지만을활용하는자가지도학습

(self-supervised) 3D 가우시안 프레임워크를 제안한다. 2D 
VLM 토큰을가우시안 표현의잠재특징으로 압축해장면
의 기하학적 구조와 의미 정보를동시에인코딩하고, 이를
LLM과 정렬된 시각 토큰으로변환하여 zero-shot VQA를
가능하게 한다. 추론단계에서는 엔트로피 기반토큰 샘플

링으로 정보량이 높은 가우시안을 선택해, 추가 파인튜닝
없이도 효율적인 성능을 달성한다.

cdViews[31]는다중시점 RGB 이미지만을활용한다는점
에서는 SplatTalk[30]와 유사하지만, 3D 재구성없이단순히
다중 시점 2D 이미지와 2D VLM만을 사용한다. 3D 데이
터가 희소한상황에서 3D 모달리티와 언어의직접 정렬은
어렵고불안정하며, 이미언어와잘 정렬된 2D VLM의 특
징을활용하더라도대규모데이터와복잡한설계가요구되

는한계가있다. 이를극복하기위해 cdViews[31]는 3D-언어
직접 정렬을 회피하고, 질문 관련성, 정보 충분성, 뷰다양
성을 동시에만족하는 뷰선별만으로 zero-shot VQA를 수
행하는 단순하면서도 효율적인 접근을 제안한다.

3. 다중 태스크 학습 기법(Multi-task Learning)

3.1 사전 학습 기법
3D-VLP[32]와 3D-VisTA[33]는 통합된 프레임워크에서

3D 장면특징과언어표현을트랜스포머로융합하여, 장면
–언어정렬을위한사전학습방식을도입한다. 사전학습
후에는다양한 태스크 헤드를 추가하고 미세조정(fine-tun-
ing)을 통해 3D 시각 그라운딩(3D Visual Grounding), 3D 
고밀도 캡셔닝, 3D 질의응답과 같이다양한 3D 관련태스
크를수행하도록한다. 3D-VLP[32]는문맥인지형공간–의

미 정렬(context-aware spatial–semantic alignment)과상호
마스킹 모델링(mutual masked modeling)을 도입해 멀티모
달 특징의의미정렬을강화하고두 모달리티가 상호 보완

적으로 작동하도록 설계하였다. 한편 3D-VisTA[33]는 마스

크드 언어 모델링(Masked Language Modeling)과 마스크
드객체모델링(Masked Object Modeling) 전략을적용하여
3D 장면특징과언어특징을공동임베딩공간에서효율적
으로 융합한다.

3D-LLM[34]은 3D 포인트 클라우드장면을 다중 시점 이
미지로렌더링한뒤, 각 이미지로부터 언어와 정렬된 고밀
도 2D 시각피처를추출한다. 추출된다중시점 2D 피처들
을융합하여동일한특징공간상의 3D 피처로재구성한다. 
이를 통해 사전 학습된 2D VLM을 백본으로 활용한 효율
적인 3D-LLM 학습이 가능해지며, LLM을 활용하기 때문
에 3D 캡셔닝과 3D 질의응답을포함하여대화, 작업분해, 
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내비게이션등다양한언어생성기반 3D 태스크를수행할
수 있다.

Chat-3D v2[35]는 각 객체에 대해 속성 인지(attribute- 
aware) 및관계인지(relation-aware) 토큰을학습하고, 이를
객체의 고유 식별자와 결합함으로써 LLM이 특정 객체를
명시적으로참조하고더심도있는 3D 공간정보를이해하
도록한다. 이를통해기존 VLM 기반접근에비해 LLM의
3D 공간 이해 능력을 강화하여, 3D-언어가 정렬된 모델에
서파인튜닝을활용해다양한 3D 장면이해과제에서일관
된 성능 향상을 달성한다.

Scene-LLM[36]은 1인칭시점 정보와 장면 수준의 3D 정
보를통합하여 LLM에직접결합하는 3D 비전–언어모델
로, 3D 시각정보와 LLM의효과적인정렬을통해 3D 장면
이해 및 추론을 강화한다. 구체적으로, 포인트–복셀 기반
의 하이브리드 3D 표현을텍스트 임베딩 공간에투영하여
LLM과정렬하고, 이후 3D 프레임및장면–언어데이터로
LLM과 프로젝션 레이어를 함께미세 조정하여 사용자 명
령을 정확하게 수행하도록 최적화한다. 이를 통해 다양한
언어 생성 태스크를 하나의 프레임워크로 처리한다.

   
3.2 합동 학습 기법(Joint Training)
LEO[13]는 1인칭 시점(egocentric) 기반 3D 이미지, 3D 
포인트 클라우드, 텍스트를 입력으로 받아, 이들을 토큰화
하고 통합된 시퀀스 형식으로 변환한 후, 이를 자기회귀적
(autoregressive) 방식으로 처리하는 범용 프레임워크이다. 
3D 캡셔닝, 질의응답, 대화, 작업계획등다양한언어생성
기반 태스크를 단일 통합 모델 아키텍처를 통해수행하며, 
객체및장면수준특징정렬을언어표현과 정렬함으로써

뛰어난 zero-shot 성능을 달성한다.
Chat-Scene[37]은객체식별자(object identifiers)를도입하
여 3D 장면내객체에대한효율적인참조와그라운딩을가
능하게 하며, 이를 활용해 다양한 3D 장면–언어 태스크를
하나의통합된질의응답형식으로변환하여태스크특화헤드

없이합동학습만으로수행한다. 또한사전학습된파운데이
션모델(foundation model)로부터 추출한객체중심멀티모
달표현시퀀스를사용하여 3D 장면을효과적으로표현한다.

LL3DA[38]는 포인트 클라우드, 텍스트 지시, 그리고 클
릭·바운딩 박스와 같은 시각적 상호작용을 입력으로 받아

이를 통합하고, 자기회귀적 방식으로 다양한 언어 생성 기
반 태스크를 단일 프레임워크로 수행하는 범용 3D 비전–
언어모델이다. 사전학습된 3D 인코더와 LLM은고정하고
멀티모달 트랜스포머(Q-Former)와 프로젝션 모듈만을 in-
struction tuning으로 미세 조정하여 3D 장면 표현과 언어
공간을정렬한다. 이를통해태스크특화헤드없이도다양
한 3D 태스크에서 효과적인 zero-shot 성능을 달성한다.

Inst3D-LMM[39]은 3D 포인트 클라우드와 다중 시점

RGB 이미지에서 추출한 기하·의미 정보를 인스턴스 단위
로 융합하여 LLM에 입력하는 인스턴스 인지형(instance- 
aware) 3D 멀티모달 모델이다. 다중 시점 2D 의미론적
open-vocabulary 정보를 3D 기하학적 특징에 주입함으로
써객체의세부속성과객체간공간관계를정밀하게반영

한인스턴스수준토큰을생성하며, 이를기반으로 3D 캡셔
닝, 질의응답, 시각적 그라운딩 등 다양한 태스크를 단일
지시(instruction) 형식으로 공동 학습(joint instruction tun-
ing)한다.

  

Ⅴ. 성능 평가 지표 및 최신 연구 성능 비교

본 장에서는 주요 성능 평가 지표와 대표 벤치마크에서

의 최신 연구 성능을 비교·분석한다.

1. 주요 성능 평가 지표

언어 생성 기반 태스크의 성능 평가는 생성된 텍스트의

품질과 3D 객체위치 정확도를 종합적으로평가하기 위해
다양한 평가 지표를 사용한다. 대표적으로 생성된 텍스트
의 품질은 Exact Match(EM), BLEU, ROUGE, METEOR, 
그리고 CIDEr를사용하고, 3D 고밀도캡셔닝과 같이객체
검출의정확성도고려하는경우에는생성된텍스트의품질

과 검출된 객체의 정확성을 통합적으로 평가하기 위해

m@kIoU 지표를사용하며, 표 2에서각평가 지표의목적, 
적용 도메인, 그리고 장단점을 요약하여 정리하였고, 그림
4에서는각평가지표결과에대한정성적평가를나타내기
위해 Scan2Cap(상단)과 ScanQA(하단) 데이터셋의 예시를
나타내었다. 
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Measure Aim Domain Strengths Weaknesses

Exact Match (EM) precision QA Suitable for exact answer 
matching

Not suitable for open-ended 
response evaluation

BLEU[40] n-gram precision Machine translation Computationally efficient Sensitive to wording and 
sentence length

ROUGE[41] n-gram recall Text summarization Computationally simple Limited handling of 
paraphrases and synonyms

METEOR[42] uni-gram precision,
uni-gram recall Machine translation Consider stems and synonyms,

Strong human correlation
Relies on external linguistic 

resources

CIDEr[43] TF-IDF Visual captioning Strong human correlation Biased toward consensus 
wording across references

m@kIoU[8] IoU 3D dense 
captioning

Evaluates both localization and 
captioning

over-dependence on the 
threshold 

표 2. 주요 성능 평가 지표
Table 2. Evaluation Metrics

그림 4. Scan2Cap 및 ScanQA 데이터셋 기반 3D 장면 이해 태스크의 정성적 예시. 상단은 3D 고밀도 캡셔닝(Scan2Cap), 하단은 3D 
질의응답(ScanQA) 결과를 보여주며, 각 응답에 대한 정량적 성능 평가 지표를 함께 제시한다.
Fig. 4. Qualitative examples of 3D scene understanding tasks based on the Scan2Cap and ScanQA datasets. The top illustrates 
dense 3D captioning results (Scan2Cap), and the bottom shows 3D question answering results (ScanQA), along with quantitative 
evaluation metrics for each response. 
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Exact Match(EM)는 정답과의 완전 일치 여부를 기준으
로하는정밀도기반지표로 3D 질의응답태스크성능평가
에서 사용되며, 주로 EM@1 또는 EM@10 점수를 사용한
다. EM@K는 예측 신뢰도 상위 K개의 답변 중 참조 답변
과 정확하게 일치하는 답변이 하나라도 존재하는 비율을

의미하고, 동의어나 의역 등을허용하지않고정확하게일
치하는 경우만 허용한다. 따라서 그림 4의 하단 예시에서
확인할수있듯이, “In front of tv”라는응답은정답에포함
된 핵심 객체와 정확히 일치하여 EM@1 점수 1을 획득한
반면, “In front of brown table” 또는 “Next to tv”과 같이
부분적으로 관련되거나 의미적으로 유사하지만, 정답과의
완전일치가아니기때문에모두 0점으로처리된다. 이처럼
EM 점수는폐쇄형답변평가에적합하지만, 개방형응답에
는 한계가 있다.

BLEU[40]와 ROUGE[41]는 각각 n-그램 정밀도와 재현율
을기반으로 생성된문장과참조문장간의유사성을측정

하는평가지표이다. 그림 4의하단예시와같이, EM 점수
에서는 0으로 계산된 응답도 BLEU와 ROUGE는 문장 간
n-그램중첩을고려함으로써표현수준의유사성을 반영한
것을 확인할 수 있다. 표 2에서 나타난 바와 같이, 이러한
n-그램기반지표들은 비교적간단하고계산효율적이라는
장점이 있으나, 표면적 표현유사성에중점을두기 때문에
문장의 표현 방식이나 길이에 민감하며, 동의어나 의역에
대한 처리가 제한적이라는 한계를 가진다. 그림 4의 상단
예시를 보면, 의미적 유사도는 “A white ottoman is on the 
right of the black couch.”가 정답과 더 유사하지만, “This 
is a white ottoman. It is below a whiteboard.”는문장표현
중복으로 인해 높은 BLEU 점수를가진다. 이는 n-그램 기
반지표들이표현유사성에는민감하지만의미적정확성을

충분히 반영하지 못함을 보여준다.
METEOR는이러한한계를완화하기위해 어간일치및
동의어 정보를 함께 고려함으로써 의미적 유사성을 보다

유연하게 반영한다. 단일-그램(uni-gram) 정밀도(preci- 
sion)와 재현율(recall) 모두 고려하되 재현율에 더 중점을
둔다. 동의어나어간일치등을함께고려해의미적유사성, 
어순, 그리고 문장구조를반영하므로사람 평가와의 상관
관계가상대적으로 더 높다. 이는 그림 4의 상단 예시처럼
의미적유사도가높은응답의 METEOR 점수가더높게기

록된 것을 통해 확인할 수 있다. 그러나 표 2에서 나타난
바와같이, 외부언어자원에의존한다는점에서평가환경
에 제약이 존재한다.

CIDEr[43]는 시각적 캡셔닝에 사용되는 평가 지표로, 생
성된 캡션과 정답 간의 문장 수준에서 Term Frequency- 
Inverse Document Frequency(TF-IDF)를 통해 코사인유사
도를 계산한다. 이때 각 n-그램은 코퍼스 전반에서의 등장
빈도에 따라 가중치가 부여되며, 다수의 참조 문장들에서
빈도가높은구문일수록상대적으로낮은가중치를갖는다. 
이러한특성으로인해 CIDEr는사람평가와높은상관관계
를보이는장점이있으나, 표에서요약된바와같이, 코퍼스
내다수참조문장의합의된표현(consensus wording)에편
향되는 경향을 가진다. 그 결과, 의미적으로 유사해도 표현
방식이 참조 문장과 상이한 경우에는 낮은 점수를 받을 수

있으며, 반대로표면적문장구조가유사한경우의미적오류
가존재하더라도상대적으로높은점수를얻을수있다. 그림
4의상단예시와같이, “A white ottoman is on the right of 
the black couch.”가의미적유사도는가장높지만표면적문
장 구조가 유사한 “This is a white ottoman. It is below a 
whiteboard.”의 CIDEr 점수가 가장 높다.
마지막으로, m@kIoU[8]는 3D 고밀도캡셔닝태스크에서
객체위치정확도와 캡셔닝품질을함께평가하기위해사

용되며, 예측된 바운딩박스와 실제바운딩 박스 간의 IoU
가 k 이상인경우에만캡셔닝결과를유효한예측으로간주
한다. 이러한방식은위치추정과언어생성성능을동시에
고려할 수 있다는 장점이 있으나, IoU 임계값 k의 설정에
따라평가결과가민감하게변할수있다는한계를가진다. 

2. 최신 연구 성능 비교

본 절에서는 태스크별 최신 연구의 성능을 비교하고 결

과를분석한다. 분석범위는정량지표가정의된 3D 고밀도
캡셔닝(3D Dense Captioning)과 3D 질의응답(3D QA)으로
한정한다. 3D 고밀도캡셔닝(3D Dense Captioning)의경우
Scan2Cap와 Nr3D 벤치마크데이터에서의결과를, 3D QA
의 경우 ScanQA와 SQA3D 데이터셋의 결과를 제시한다. 
각 결과는 모델의 태스크 구성 방식에 따라 STL(단일)과
MTL(다중)로구분해기술하며, 입력 3D 장면표현유형을
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함께 보고한다. 

2.1 3D 고밀도 캡셔닝(3D Dense Captioning)
표 3과 표 4는 각각 Scan2Cap과 Nr3D 검증(validation) 
데이터셋에서의 3D 고밀도캡셔닝 성능비교 결과를보여
준다. 두 벤치마크 모두에서 LLM 기반 다중 태스크 학습
모델이기존 단일 태스크 모델보다 우수한 성능을 보인다. 
먼저 표 3의 Scan2Cap 결과를보면, LLM 중심의 다중 태

스크 모델이 대부분의 지표에서 상위 성능을 기록했다. 특
히인스턴스인식정보와객체식별정보등객체수준특징

을 LLM과 정렬하는 3D-언어 정렬 기반 접근(LEO, Chat- 
Scene, Inst3D-LMM)이 큰 성능 향상을 보였으며, Inst3D- 
LMM은 CIDEr@0.5, LEO는 ROUGE@0.5와 METEOR@ 
0.5에서최고성능을달성했다. 이는객체수준표현의명시
적모델링과 LLM의언어생성능력활용이고밀도캡셔닝
성능 향상에 핵심적임을 시사한다.

Method Task 
Setting LLM

Scan2Cap (val)
C@0.5 B-4@0.5 M@0.5 R@0.5

Scan2Cap 
Scan2Cap (w/ 2 D)[8] STL

35.2 22.4 21.4 43.6
39.1 23.3 22.0 44.8

MORE
MORE (w/ 2 D)[2-4] STL

39.0 23.0 21.7 44.3
40.9 22.9 21.7 44.4

X-Trans2Cap
X-Trans2Cap (w/2 D)[2-6] STL

41.5 23.8 21.9 45.0
43.9 25.1 22.5 45.3

SpaCap3D
SpaCap3D (w/ 2 D)[2-5] STL

42.8 25.4 22.8 45.7
44.0 25.3 22.3 45.4

Vote2Cap-DETR
Vote2Cap-DETR (w/2 D)[2-7] STL

73.8 38.2 26.6 54.7
70.6 35.7 25.5 52.3

Vote2Cap-DETR+ +
Vote2Cap-DETR+ +  (w/ 2 D)[2-8] STL

78.2 39.7 26.9 55.5
74.4 37.2 26.2 53.3

3D-VLP
3D-VLP (w/ 2 D)[32] MTL

50.0 31.9 24.5 51.2
54.9 32.3 24.8 51.5

3D-VisTA[33] MTL 66.9 34.0 27.1 54.3
LEO[13] MTL V 72.4 38.2 27.9 58.1

Chat-3D v2[35] MTL V 63.9 31.8 22.3 50.2
LL3DA[38] MTL V 65.2 36.8 26.0 55.1

Chat-Scene[37] MTL V 77.1 36.3 - -
Inst3D-LMM[39] MTL V 79.7 38.3 27.5 57.2

표 3. Scan2Cap validation 데이터셋에서의 성능 평가
Table 3. Experimental results on the Scan2Cap validation set

Method Task 
Setting LLM

Nr3D (val)
C@0.5 B-4@0.5 M@0.5 R@0.5

X-Trans2Cap
X-Trans2Cap (w/ 2 D)[2-6] STL

31.0 18.7 22.2 49.9
33.6 19.3 22.3 50.0

SpaCap3D
SpaCap3D (w/ 2 D)[2-5] STL

31.4 19.0 22.2 49.8
33.7 19.9 22.6 50.5

Vote2Cap-DETR (w/ 2 D)[2-7] STL 45.5 26.9 25.4 54.8
Vote2Cap-DETR+ +  (w/ 2 D)[2-8] STL 47.6 28.4 25.6 54.8

LL3DA[38] MTL V 51.2 28.8 25.9 56.6

표 4. Nr3D validation 데이터셋에서의 성능 평가
Table 4. Experimental results on the Nr3D validation set
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한편, 객체검출과설명생성을통합한 end-to-end 방식인
Vote2Cap-DETR++는 전통적인 ‘Detect-then-Describe’ 접
근보다 전반적으로 높은 성능을 보였으며, 3D 입력만으로
도 높은 BLEU-4@0.5를 기록해 위치 예측과 캡셔닝의 합

동 최적화 효과를 입증한다. 
Nr3D 데이터셋에서도유사한경향이관찰되었고, LLM을
활용한 다중 태스크 모델(LL3DA)이 CIDEr, BLEU, 
METEOR 등모든지표에서상대적으로높은성능을보였다.

Method Task 
Setting LLM

ScanQA (val)
EM@1 BLEU-4 ROUGE METEOR CIDEr

ScanQA[9] STL 21.1 10.1 33.3 13.1 64.9
BridgeQA[29] STL 27.0 - - - -
SplatTalk[30] STL 17.1 - 32.7 14.2 61.7
3D-VLP[32] MTL 21.7 11.2 34.5 13.5 67.0

3D-VisTA[33] MTL 22.4 10.4 35.7 13.9 69.6
3D-LLM[34] MTL V 20.5 35.7 14.5 69.4

Chat-3D v2[35] MTL V 21.1 7.3 40.1 16.1 77.1
Scene-LLM[36] MTL V 27.2 - 40.0 16.6 80.0

LEO[13] MTL V 24.5 13.2 49.2 20.0 101.4
LL3DA[38] MTL V - - 37.3 15.9 76.8

Chat-Scene[37] MTL V 21.6 14.3 41.6 18.0 87.7
Inst3D-LLM[39] MTL V 24.6 14.9 42.6 18.4 88.6

표 5. ScanQA validation 데이터셋에서의 성능 평가
Table 5. Experimental results on the ScanQA validation set

Method Task 
Setting LLM

SQA3D (test)
What Is How Can Which Other Avg.

ScanQA[9] STL 28.6 65.0 47.3 66.3 43.9 42.9 45.3
SQA3D[10] STL 34.5 66.1 42.4 69.5 43.0 46.4 47.2

SplatTalk[30] STL V - - - - - - 26.1
cdViews[31] STL V - - - - - - 56.9
3D-VisTA[33] MTL 34.8 63.3 45.4 69.8 47.2 48.1 48.5
3D-LLM[34] MTL V 35.0 66.0 47.0 69.0 48.0 46.0 48.1

Scene-LLM[36] MTL V 40.9 69.1 45.0 70.8 47.2 52.3 54.2
LEO[13] MTL V 46.8 64.1 47.0 60.8 44.2 54.3 52.9

Chat-Scene[37] MTL V - - - - - - 54.6

표 7. SQA3D test 데이터셋에서의 성능 평가
Table 7. Experimental results on the SQA3D test set

Method Task 
Setting LLM

ScanQA (test with object)
EM@1 BLEU-4 ROUGE METEOR CIDEr

ScanQA[9] STL 23.5 12.0 34.3 13.6 67.3
BridgeQA[29] STL 31.3 24.1 43.3 16.5 83.8
cdViews[31] STL V 35.0 - 49.7 - 102.8
3D-VLP[32] MTL 24.6 11.2 36.0 14.2 70.2

3D-VisTA[33] MTL 27.0 16.0 38.6 15.2 76.6
3D-LLM[34] MTL V 19.1 11.6 35.3 14.9 69.6
LL3DA[38] MTL V - 13.5 37.3 15.9 76.8

표 6. ScanQA test 데이터셋에서의 성능 평가
Table 6. Experimental results on the ScanQA test set with objects
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2.2 3D 질의응답(3D Question Answering, 3D QA)
표 5와 표 6에서는 ScanQA 데이터셋에서의 3D 시각적
질의응답 성능, 그리고 표 7에서는 SQA3D 데이터셋에서
의 3D 상황적 질의응답성능 결과를나타낸다. 3D 고밀도
캡셔닝 결과와 유사하게 3D 정보를 LLM에 직접 통합해
추론을강화한방식(Scene-LLM, LEO, Inst3D-LMM)이전
반적으로상위성능을기록하며, 이는언어생성과추론과
정에서의일관된성능우위와함께, 다양한 3D 언어태스크
에 대한 우수한 일반화 능력을 보여준다. 
한편, 명시적인 3D 입력 없이 다중 시점 이미지와 사전
학습된 2D 대형비전–언어모델(LVLM)의지식을효과적
으로활용한 cdViews 역시 경쟁력있는성능을보였다. 특
히 ScanQA test 데이터셋에서는 EM@1, ROUGE, CIDEr 
지표에서, SQA3D 데이터셋에서는 EM@1에서 가장 높은
성능을 달성하였다. 이러한 결과는 객체의 정밀한위치추
정이 중요한 3D 고밀도캡셔닝과 달리, 3D 질의응답 태스
크에서는질의에필요한핵심정보만을선별적으로제공하

는 것만으로도 정확한 답변 생성이 가능함을 시사한다.

 Ⅵ. 결론 및 향후 연구 방향

본논문은 언어 생성기반 3D 장면이해의 데이터셋, 태
스크 정의, 그리고최신 연구동향을종합적으로정리하고, 
각 방법의 성능과 특성을 비교·분석하였다. LLM과 VLM
의발전으로 언어 이해와추론능력이향상되면서보다구

체적이고 정확한 자연어 응답을 생성할 수 있게되었으나, 
3D 장면과언어 주석이결합된 고품질의 대규모데이터의
부족과제한된 장면다양성으로 인해여전히 3D 공간으로
의 일반화에는 취약하다. 또한 2D/3D 인지(perception) 모
델에 대한 의존성으로 인해 장면 구조와 객체 간 관계가

복잡해질수록 성능이 급격히 저하된다. 아울러 대부분의
LLM이 2D 데이터기반으로사전학습되었기때문에 3D와
언어의정렬이어렵고, 이로인해 3차원적지능과추론에는
근본적한계가존재한다. 더나아가실제 3D 공간의복잡도
에비해 3D 표현단계에서는정보손실과연산효율을위한
단순화가 불가피하여 활용 가능한 정보가 제한되며, 대규
모 3D 장면으로확장할수록처리해야할정보량과연산비

용이 급격히 증가한다는 문제가 있다.
이러한 한계를 해소하기 위해서는, 실제 데이터 수집만
으로 확보하기 어려운 규모와 다양성을 보완할 수 있도록

시뮬레이션환경에서다양한장면을포함하는대규모합성

데이터를 구축하고 LLM의 능력을 활용해 복잡한 맥락을
반영한풍부한언어주석을자동생성할필요가있다. 시뮬
레이션환경에서는객체위치, 바운딩박스등정확한기하
정보와주석의품질과일관성이보장되기때문에노이즈가

적다는 장점도 있다. 아울러 3D 데이터를 처리할 때 사전
학습된 2D VLM에 의존해 활용하기보다는 3D 장면 표현
을 직접적으로 LLM과 통합하여 3차원공간에서의추론을
강화하는연구가필수적이다. 이러한접근은 3D 이해와언
어 정렬을 동시에 강화하여 일반화 성능을 높이고, 결과적
으로 LLM의 3D 태스크에서의 심층적 추론 능력 향상을
기대할 수 있다.
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