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Abstract

The rapid growth of robotics, wearable devices, and augmented reality/virtual reality (AR/VR) has garnered attention of spatial
media, in which a user can naturally interact with their three-dimensional (3D) environments and media services. This paper
provides a comprehensive review of recent research on language generation - based 3D scene understanding, which is crucial for
such agents. We first introduce representative datasets and define key language-generation tasks in 3D scene understanding. We
then survey existing methods categorized into single-task and multi-task learning approaches. Next, we compare and evaluate
state-of-the-art models on standard benchmarks. Finally, we discuss current limitations and outline promising directions for future
research.
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Text
It is a compact room with a bed, desk and chairs, storage
units, and scattered personal items. alongside a bathroom
area with a sink. toilet. and bathtub.

Text

« Abrown and blue chair on the right side of the room.
+ Thisis a white pillow. It is at the head of a rectangular

bed.

+ Thisis a bed. This bed has on top a blue blanket.
+ Thisis a toilet. The toilet is situated between the
bathtub and the sink.

« The laptop is located on top of the desk. The laptop is
open. the laptop is basically centered on the desktop,
with items on both sides of it.

Fig. 1. lllustration of 3D Scene Captioning and Dense Captioning Tasks
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1.1 3D Z4A<(3D Captioning)

3D MY 3D FHo] vehe B84, Al JR
& AAo 2 Ashs AS H5xE gl ol A Aol
e Ao d A FHe F9 AA|, 123 AAE Aol
s rgete] A 59 3D A9 olslE 275k 3D
J(3D Scene Captioning)¥}, FH W A H EE
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£ YeRiH, 3D YEE WML A, IF AT A A

Atk

1.2 3D Z2|2EH3D Question Answering, 3D QA)
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3D Visual Question Answering

Scene

3D Situated Question Answering

Scene
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Text

Question: How many pairs of shoes - Text

Answer: 2

is the table behind?

Situation: T am washing my face at
the sink with a bathtub on my right.

Question: Is the toilet seat covered

Text
Text

Answer: up

up or down to my left?

Fig. 2. lllustration of 3D Visual Question Answering and Situated Question Answering
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Datatset Source Scene Objects Data Pairs Task
Scan2Cap®® ScanNet!'! 800 11,046 51,583 3D dense captioning
Nr3D!"'2 ScanNet!""! 707 4,664 32,919 3D object grounding
ScanQA® ScanNet" 800 - 41,363Q, VQA
58,191A
20,400Q .
[10] [11] B . ,
SQA3D ScanNet! 650 33.400A Situated VQA
Multi-task
ScanNet" (Scer?e captioping,
LEO™ 3RScan(™, 3000 - 83,000 3D object captioning
Objaverse!™ 3D QA,
) Embodied Navigation
etc.)
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MSQA!! 3RScan!™, - - 251,000 Situated VQA
ARKitScenes!"”!
9 AT B23 H9E Hlaste] YeERUth Ao)3d, WAl 5 FHS 23 E A At
ScanNet 7|¥F glo]E{lo 2= 3D T2 E AAYE 9%
Scan2Cap3 3D A 3 Bl ATE U&= Ni3D7F &
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Ao 3HEHE thFr, AT doHE T4 F3 1X % T&e e 1A ZJAE FEheEo B4 =AY
I FES 276 3D A Aoy Haas 19 3D 715184 Jejo} R JHE WA HOE BdHs=
st} 2, I3 g AlA oln] R ¢ et JEE &8sk o
MSQA(Multi-modal Situated Question Answering)+= 7| = AA 7Rk 88 5 79 3D 9 23 WS AvEth
Z9] 3D do2d HolEMlo] FE HIAE 7]uke] Abst A ojojA] Qlof AJA] 7]Hk 3D W ol3] A+E T A gt
ol oE5te] Al AR E Ao sjAS 93t Yoz | &3t #A) g5 JIHe R EFele] AAFHoE A
AH OB 83elA] Fale SHAE Bekstaal ArE A th &zl gt
AA Ay 3D AHE ke g g A2E olux|, 3D EIE
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Fig. 3. Visualization of 3D scene representations
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Table 2. Evaluation Metrics

Measure Aim Domain Strengths Weaknesses
Exact Match (EM) precision QA Suitable for exlact answer Not suitable for openl-ended
matching response evaluation
BLEUMO n-gram precision Machine translation Computationally efficient Sensitive to wording and
sentence length
ROUGE®!! n-gram recall Text summarization Computationally simple Limited handling of
paraphrases and synonyms
METEOR¥2 unl-gram precision, Machine translation Consider stems and synqnyms, Relies on external linguistic
uni-gram recall Strong human correlation resources
CIDEA* TF-IDF Visual captioning Strong human correlation Blasgd foward consensus
wording across references
m@kloU® loU 3D dense Evaluates both localization and over-dependence on the
captioning captioning threshold k

Instruction Ground Truth Response BLEU-4 METEOR ROUGE
Provide a description of the object in the scene.
3 4 A white ottoman is
- 4 on the right of the 53 345 40.4 59.9
black couch.
This is a white ottoman. It is located to .
the right of the black couch. Agray o.ttcmams
on the right of the 12.5 18.0 25.0 44.9
gray couch.
This is a white
ottoman. [tis 38.7 38.8 26.1 54.0
below a
whiteboard.

Question Ground Truth Response EM@1 CIDEr BLEU-4 METEOR ROUGE
Where is the chair with no arms that is pushed
furthest away from table located?
In front of tv 1 65.1 100 100 100
In front of tv,
In front of long narrow table against In front of long
wall niront of lon
thin table 0 42.4 53.7 29.1 78.2
Next to tv 0 0.9 4.6 15.3 27.3
2! 4. Scan2Cap % ScanQA HIO[E{Al 7]Ht 3D &M O[5} EfAT S| MMM oA, AEFS 3D 1T Z4ME(Scan2Cap), 3l 3D
Zo|ZE(ScanQA) Z1E 20iF0, 2t SHol| het M2 M5 BIt XA ES & HMAISC

Fig. 4. Qualitative examples of 3D scene understanding tasks based on the Scan2Cap and ScanQA datasets. The top illustrates
dense 3D captioning results (Scan2Cap), and the bottom shows 3D question answering results (ScanQA), along with quantitative
evaluation metrics for each response.
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2.1 3D YUz 24MU(3D Dense Captioning) < LM A E3sh= 3D-91o] AE 719 HH(LEO, Chat-
3 33 3 4+ 77} Scan2Cap} Nr3D 7 5(validation) Scene, Inst3D-LMM)°] 2 A% GAS B30 H, Inst3D-

2+7}

telgAle| 48] 3D X9 E MY A5 Bl AHE Ho LMM-2 CIDEr@0.5, LEO= ROUGE@0.5¢F METEOR@,
ot F Wlx|ula EFolA LLM 7|9 o B3 gy 0.5914 H3L A5 @A ol AA 7 mde) YA

do] 7]E @Y BT R ET 58 TS Btk 2 2dgs LM olo] AA =3 g8o] 73

A Z 39 Scan2Cap 235 HW, LLM 49 t5 AT el AAHAE AALET

E 3. Scan2Cap validation HO|E{AIOIMS] A5 T}
Table 3. Experimental results on the Scan2Cap validation set

Method Task LLM Scan2Cap (val)
Setting C@0.5 B-4@0.5 M@0.5 R@0.5

Scan2Cap STL 35.2 22.4 21.4 43.6
Scan2Cap (w/ 2 D)® 39.1 23.3 22.0 448
MORE 39.0 23.0 217 443
MORE (w/ 2 D)4 STL 40.9 22.9 217 444
X-Trans2Cap STL 41.5 23.8 21.9 45.0
X-Trans2Cap (w/2 D)#® 439 25.1 22.5 453
SpaCap3D STL 428 254 22.8 457
SpaCap3D (w/ 2 D)?¥ 44,0 25.3 22.3 454
Vote2Cap-DETR STL 73.8 38.2 26.6 54.7
Vote2Cap-DETR (w/2 D)*”) 70.6 35.7 255 52.3
Vote2Cap-DETR+ + STL 78.2 39.7 26.9 55.5
Vote2Cap-DETR+ + (w/ 2 D)?® 74.4 37.2 26.2 53.3
3D-VLP MTL 50.0 31.9 245 51.2
3D-VLP (w/ 2 D) 54.9 32.3 24.8 515
3D-VisTAP? MTL 66.9 34.0 27.1 54.3
LEO!™! MTL \% 72.4 38.2 27.9 58.1
Chat-3D v2i? MTL v 63.9 31.8 223 50.2
LL3DAR MTL \% 65.2 36.8 26.0 55.1

Chat-Scenel®” MTL \% 771 36.3 - -
Inst3D-LMME! MTL Y 79.7 38.3 275 57.2

E 4. Nr3D validation H|O|E{AIOIMS| Hs HI}
Table 4. Experimental results on the Nr3D validation set

Task Nr3D (val)
Method ; LLM

Setting c@o.s B-4@0.5 M@0.5 R@0.5

X-Trans2Cap (w/ 2 D)#? 336 19.3 223 50.0
SpaCap3D - 314 19.0 222 49.8
SpaCap3D (w/ 2 D)*? 337 19.9 226 50.5
Vote2Cap-DETR (w/ 2 D)27 STL 455 26.9 254 54.8
Vote2Cap-DETR+ + (w/ 2 D)% STL 476 28.4 256 54.8
LL3DALS MTL v 51.2 28.8 259 56.6




Ade 9 29

32 o]

g 99

oo} A 71uke] 3D AW olg] 51

(Yeoneui Kim et al.: Language Generation-based 3D Scene Understanding for Spatial Media)

SHH, A A& A AAS 533 end-to-end W91 = HA3 aHE Yg=3ink
Vote2Cap-DETR+++= 52l ‘Detect-then-Describe’ 3 Ni3D vloJEAMAME FARSE Agko] #aAE YT, LLMS
CHET AR o R & 45 HYow, 3D gEvew &83 v el23 FY(LL3DA)°] CIDEr, BLEU,
T =2 BLEUA4@O.55 7153 91A &3 A9 3 METEOR & E& A3olA A o® =& 55 Bk

5. ScanQA validation C|O[E{AIOIA{S] AS T}
Table 5. Experimental results on the ScanQA validation set
Task ScanQA (val)
Method Setting LM EM@1 BLEU-4 ROUGE | METEOR CIDEr
ScanQA® STL 21.1 10.1 333 13.1 64.9
BridgeQA! STL 27.0 - - - -
SplatTalk?*” STL 17.1 - 327 14.2 61.7
3D-VLPR2 MTL 21.7 11.2 345 135 67.0
3D-VisTAR MTL 224 10.4 357 13.9 69.6
3D-LLMB4 MTL Y 20.5 357 14,5 69.4
Chat-3D v2i*! MTL \Y 21.1 7.3 40.1 16.1 771
Scene-LLMP? MTL \Y 27.2 - 40.0 16.6 80.0
LEQO! MTL \Y 245 13.2 49.2 20.0 101.4
LL3DAR®! MTL \Y - - 37.3 15.9 76.8
Chat-Scene®®’ MTL Y 21.6 14.3 416 18.0 87.7
Inst3D-LLME! MTL \Y 24.6 14.9 426 18.4 88.6
E 6. ScanQA test HIO|EMIOIMS] M I}
Table 6. Experimental results on the ScanQA test set with objects
Method Ta§k LLM ScanQA (test with object)
Setting EM@1 BLEU-4 ROUGE METEOR CIDEr
ScanQA®! STL 235 12.0 343 13.6 67.3
BridgeQA??! STL 31.3 24.1 433 16.5 83.8
cdViewst"! STL v 35.0 - 49.7 - 102.8
3D-VLPE2 MTL 24.6 11.2 36.0 14.2 70.2
3D-VisTA® MTL 27.0 16.0 38.6 15.2 76.6
3D-LLM®Y MTL v 19.1 11.6 35.3 14.9 69.6
LL3DARY MTL \% - 13.5 37.3 15.9 76.8
I 7. SQA3D test HIOIEAIOIMS] M It
Table 7. Experimental results on the SQA3D test set
Method Tagk LLM SQA3D (test) .
Setting What Is How Can Which Other Avg.
ScanQA® STL 28.6 65.0 47.3 66.3 43.9 429 453
SQA3D!"% STL 345 66.1 424 69.5 43.0 46.4 472
SplatTalk®” STL \Y - - - - - - 26.1
cdViews®"! STL Y - - - - - - 56.9
3D-VisTAR! MTL 34.8 63.3 45.4 69.8 472 48.1 485
3D-LLMPY MTL \Y 35.0 66.0 47.0 69.0 48.0 46.0 48.1
Scene-LLME®! MTL \Y 40.9 69.1 45.0 70.8 472 52.3 54.2
LEO! MTL \Y 46.8 64.1 47.0 60.8 442 54.3 52.9
Chat-Scene®™! MTL Y - - - - - - 54.6
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2.2 3D Z2|SEH3D Question Answering, 3D QA)

Sl

3 59 3 69141 ScanQA EloEIALl| A €] 3D A7+
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