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Abstract

Large Language Models (LLMs) have emerged as a revolutionary technology, significantly advancing numerous domains across
artificial intelligence. However, their extensive computational and memory requirements present major challenges for deployment in
resource-constrained environments. Post-Training Quantization (PTQ) has recently gained substantial attention as an effective
approach for compressing LLMs while maintaining performance. In this work, we introduce MaskSmooth, a framework designed to
enhance the robustness of quantized models through selective channel smoothing. Unlike existing methods that uniformly smooth
all channels regardless of their need, MaskSmooth identifies and targets only those channels exhibiting significant outlier
activations. By applying a masking mechanism to isolate relevant channels, our approach achieves more efficient smoothing without
unnecessary alterations to well-behaved representations. Experimental results across a variety of LLM architectures demonstrate that
MaskSmooth consistently improves quantization robustness and preserves model accuracy on mainstream benchmarks.
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| . Introduction

Large Language Models (LLMs) have demonstrated im-
pressive performance across a multitude of natural lan-
guage processing tasks, ranging from text generation!"! to
reasoning and understanding”. Much of this capability
arises from the large-scale training of these models, where
both the amount of data and the available computational
resources have grown significantly. Despite their remark-
able performance, running and serving LLMs remains com-
putationally intensive, often requiring substantial
infrastructure. For reasons of privacy, latency, and accessi-
bility, enabling LLMs to operate in resource-constrained
environments has become a critical research challenge!®.

This challenge is compounded by the sheer size of mod-
ern LLMs, which contain billions of parameters and rely
on extensive matrix operations for inference. To address
these limitations, several model compression techniques
have been developed, among which quantization'* has
emerged as the most prominent. Quantization reduces the
memory footprint of model parameters by representing
them in low-precision formats (e.g., INT8) instead of full
precision (FP16 or FP32), thereby accelerating computa-
tions and reducing storage requirements. Among quantiza-
tion techniques, Post-Training Quantization (PTQ)" has
started showing promise within LLMs. PTQ requires only
a full-precision pretrained model and a small calibration

dataset, making it feasible to quantize large models on lim-
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ited compute resources. In contrast, Quantization-Aware
Training (QAT)™ demands access to the full dataset and
retraining of the quantized model, which can be impractical
for large LLMs due to resource and data constraints.

In this work, we introduce MaskSmooth, an efficient PTQ
framework for LLMs. MaskSmooth is motivated by the ob-
servation that certain activation channels consistently exhibit
high values across tokens, making them harder to quantize
compared to weights, which typically do not display such
outliers. Prior work® has focused on mitigating this diffi-
culty by scaling all channels, effectively shifting quantiza-
tion challenges from activations to weights. However, we
observe that uniformly scaling all channels is often
unnecessary. Instead, MaskSmooth selectively identifies
channels containing significant outlier activations and ap-
plies targeted smoothing, while masking the remaining
channels. This selective approach improves quantization ro-
bustness while reducing unnecessary transformations, result-

ing in more efficient and accurate low-precision LLMs.

II. Background

Quantization is a widely used model compression techni-
que' that reduces the precision of neural network parame-
ters and activations, enabling efficient storage and faster
computation. In a typical setting, full-precision parameters
(FP32 or FP16) are mapped to low-precision integer for-
mats, such as INT8 or INT4. This transformation allows
both memory savings and hardware acceleration for integer
arithmetic, which is often more efficient than floating-point
computation on modern accelerators.

Mathematically, a uniform linear quantization maps a re-
al-valued tensor x € R to a quantized tensor q € Z using

a scale factor s > 0 and an optional zero-point z:

q = round (f) (M

q = round (f + z) (2)
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Eq (1) and Eq (2) refer to symmetric and asymmetric
quantization respectively. In symmetric quantization, the
zero-point is fixed at zero, and the range of quantized val-
ues is symmetric around zero. The scale is computed based

on the maximum absolute value of the tensor:

_ max(|x])
-1

(3)

where b is the number of bits used for quantization. Each
quantized integer can be mapped back to a floating-point

approximation of the original tensor via:
Xquantized = S * 4 (4)

Symmetric quantization is particularly appealing for
LLMs due to its simplicity and efficiency. Since the
zero-point is zero, matrix multiplications can be performed
directly in integer arithmetic without additional offset
adjustments. Moreover, it preserves the relative scale of
positive and negative values, which is often critical for
maintaining model accuracy in attention mechanisms and

feed-forward networks.

lll. Related Works

Model compression has become a critical area of re-
search to enable deployment of deep neural networks on
resource-constrained devices. One of the earliest compre-
hensive approaches!”’ combined pruning, trained quantiza-
tion, and Huffman coding to significantly reduce model
size while maintaining accuracy. Subsequent research fo-
cused specifically on quantization as a means to reduce
both memory footprint and computational cost. Some tech-
niques' utilized arithmetic operations which allow neural
networks to operate with low-precision parameters, achiev-
ing substantial speedups on hardware accelerators opti-

mized for integer computations. More recent methods'®

have explored adaptive rounding strategies which improve
the fidelity of quantization by minimizing rounding errors
and preserving model accuracy without retraining.
Post-Training Quantization (PTQ)" has recently gained
prominence as a practical approach for compressing Large
Language Models (LLMs) without requiring full retraining.
Early works, such as GPTQ® and ZeroQuant!'”, focused
on efficiently quantizing weights to low-bit precision while
maintaining accuracy on generative and instruction-follow-
ing tasks. These methods demonstrated that careful weight
quantization, sometimes combined with approximate
rounding or error compensation, could yield substantial
memory and compute savings even for billion-parameter
models. Building on this, SmoothQuant’® introduced a
strategy to mitigate quantization errors in activations by
shifting part of the scaling from activations to weights. This
approach reduces the impact of outlier activations, which are
particularly problematic in transformer-based LLMs.
Similarly, AWQ!"'"! and OWQ"? identify channels or values
that deviate significantly from the majority distribution and
apply targeted quantization techniques to improve
robustness. Other notable PTQ frameworks include
OmniQuant™”, Quarot!'”, and AffineQuant'™”, which ex-
plore mixed-precision quantization, adaptive scaling, and
fine-grained channel-level adjustments to preserve model ac-
curacy under aggressive compression. These methods high-
light the growing trend of selectively addressing quantization
challenges in LLMs, rather than uniformly applying trans-

formations across all weights or activations.

V. Methodology

In this section, we introduce MaskSmooth, a selective
channel-smoothing framework designed to enhance the ro-
bustness of post-training quantized Large Language Models
(LLMs). Unlike prior works that uniformly smooth all

channels, MaskSmooth identifies and selectively smooths
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only those channels exhibiting significant outlier behavior.
This approach effectively reduces unnecessary computation
and preserves model integrity while maintaining low quan-

tization error.

1. Motivation

Empirical analysis of LLM activations reveals that cer-
tain channels consistently exhibit high-magnitude spikes,
deviating  significantly from the average channel
distribution. These spikes, or outliers, introduce substantial
variance during quantization, often leading to degraded
model accuracy. Interestingly, our investigation shows that
such outlier behavior is persistent across tokens and sam-
ples, suggesting that specific channels inherently tend to
amplify activation magnitudes. Previous methods, such as
SmoothQuant', addressed this problem by applying a
scaling transformation that transfers part of the activation
variance to the corresponding weight channels. This oper-
ation smooths activations globally, enabling reduced
quantization error. However, these techniques typically
perform uniform smoothing across all channels, even for
those that do not exhibit any outlier behavior, introducing
unnecessary computational overhead and potential in-

formation distortion.

2. Mask Generation

To effectively distinguish between channels that contain
outliers and those that do not, MaskSmooth begins by run-
ning the model on a small calibration dataset. During this
phase, we record the maximum activation value for each
channel across all layers and tokens. This collection of sta-
tistics provides a comprehensive view of the activation dis-
tribution and highlights channels exhibiting extreme magni-
tude behavior. Following this data collection, we perform
a statistical analysis to determine which channels can be
categorized as outlier channels. Specifically, we employ
classical statistical tools such as the interquartile range
(IQR) and its variants to establish the outlier limits for each
layer. Channels whose activation maxima exceed these lim-
its are flagged as outlier channels and are thus included in
the smoothing mask.

After determining the per-channel thresholds that dis-
tinguish inliers from outliers, we construct a binary mask
for each activation channel. Activation values falling out-
side the threshold range (outliers) are preserved, while val-
ues within the range (inliers) are replaced with the corre-
sponding upper fence value. An analogous procedure is ap-
plied to the weights: channel-wise bounds are computed,

and the channels aligned with the masked activation chan-
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Fig. 1. Visualization of maximum values of a certain layer's activation values per channel for OPT-2.7B model
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nels are replaced using the lower fence value of the
weights. This selective replacement introduces an addi-
tional smoothing effect, stabilizing activation - weight in-
teractions during quantization. Replacing all inlier activa-
tions with their channel-specific upper threshold addresses
an inherent weakness of calibration data: many channels do
not exhibit true outliers during calibration, leading to in-
sufficient correction in those channels. By enforcing
threshold-based replacement even in the absence of ob-
served outliers, our method compensates for under-
represented outlier behavior, strengthens the smoothing ef-
fect across channels, and ultimately yields a consistent and
measurable improvement in perplexity.

Figure 1 shows the per channel maximum activation val-
ues for the first decoder layer of OPT-2.7B!"® model which
clearly shows that we can isolate outliers and scale only
them.

However, we observe that activation fluctuations be-
tween channels can make the masking scheme highly sensi-
tive to the selected outlier threshold. To mitigate this, we
empirically determine that maintaining the outlier window
around the median value yields more stable and effective
results. For our work, a threshold of ~2% around the me-
dian was used, with channels within this range considered
normal and those outside it identified as outliers. Through
this process, approximately 10% of the channels that fall
within the defined threshold range are identified as
non-outliers and subsequently masked or excluded from
smoothing. The remaining ~90% of channels, whose values
lie outside the threshold range, are then selected for the

smoothing operation. The detailed values for different

F 1. O|akxlof ChEt miekE DIXIE ARESio] aie OjaZle 78
Table 1. Channel masking achieved with proposed margin for outliers

Model Channel Mask (%)
OPT-125M 9.47%
OPT-1.3B 9.81%
OPT-2.7B 9.50%
OPT-6.7B 9.95%

models can be seen in Table 1. This configuration ensures
that only a limited subset of channels, those with
pro-nounced deviations, are masked for smoothing while

the majority of channels are preserved for direct scaling.

3. Masked Channel Smoothing

Once the mask is generated, we modify the weight and
activation scales accordingly to calculate the scaling factor

using the offline migration introduced by smoothquant.

W' =max(W) o M (5)
X = max(X) o M (6)
s = sqre((X) /(W) (M

Here, W and X denote the weights and activations,
respectively. The function max () computes the per-channel

maximum weight and activation value, upon which the mask

M is applied, here denoted as °, to prevent non-outlier chan-
nels from undergoing the smoothing operation. Since the
weights are already available in memory and the activation
maxima are obtained from the calibration set, the per-chan-

nel scale values can be precomputed efficiently as s.

V. Experiments and Results

We conduct our study using Meta’s OPT!'® model fam-
ily, a series of open-source autoregressive language models
trained on large-scale text corpora. OPT serves as a suitable
testbed for our experiments due to its architectural sim-
ilarity to GPT-style transformer models and its widespread
use in quantization research. All experiments are performed
on the OPT model variants to ensure comparability with
prior PTQ methods such as SmoothQuant'®. To extract ac-
tivation statistics and generate channel masks, we utilize
the validation split of the WikiText-2 dataset''”. This data-

set provides a diverse yet compact corpus suitable for com
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Table 2. Performance of proposed quantization scheme with baseline

Accuracy (1) Perplexity (| )
FP16 MinMax Smoothquant MaskSmooth FP16 MinMax Smoothquant MaskSmooth
OPT-125M 63.07% 61.19% 62.60% 62.62% 38.12 42.81 41.14 41.09
OPT-1.3B 75.49% 73.08% 74.31% 74.38% 22.53 25.09 23.05 23.01
OPT-2.7B 77.84% 77.12% 78.18% 77.62% 19.54 21.92 19.69 19.66
OPT-6.7B 81.25% 45.18% 81.43% 81.39% 17.35 56.8 17.49 17.49

puting representative activation ranges and outlier charac-
teristics without incurring excessive computational cost.

For evaluation, we employ Last-Word Prediction
Accuracy (LWPA) and Perplexity (PPL), two widely
adopted metrics that reflect both generative quality and pre-
diction accuracy. We compute these metrics for the
LAMBADAM test set.

Detailed results of the experiments performed can be
seen in Table 2. Here 4 different OPT models are evaluated
under 4 different scenarios. Firstly models are evaluated in
full precision (FP16) and naive min-max quantization to es-

tablish the upper and lower bounds respectively. We then

compare our proposed methodology with smoothquant to
show that we achieve better performance in terms of per-
plexity whereas accuracy does go down a little for certain

models.

Vl. Performance Analysis

In this section, we investigate the performance of the
proposed approach under different thresholding criteria.
To illustrate the effect, we use the OPT-1.3B model and

conduct experiments across different threshold values. This
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allows us to observe a clear trend: lower thresholds help
balance the treatment of outliers and non-outliers, whereas
higher thresholds lead to a degradation in model perplexity.
Figure 2 demonstrates this behavior, showing how increas-

ing the threshold negatively impacts performance.

VI. Conclusion

In this work, we presented MaskSmooth, an efficient and
targeted framework for post-training quantization (PTQ) of
large language models. Unlike prior approaches that uni-
formly apply smoothing to all activation channels, Mask
Smooth introduces a mask-based selective smoothing
mechanism that focuses only on channels exhibiting outlier
behavior. This selective approach reduces unnecessary
computation while retaining or even improving quantiza-
tion robustness. Through extensive experimentation on
Meta’s OPT models, using WikiText-2 for calibration and
evaluating on the LAMBADA benchmark, we demon-
strated that MaskSmooth achieves competitive or superior
performance across key metrics. These findings indicate
that channel-aware selective smoothing provides an effec-
tive balance between efficiency and precision in PTQ
settings.

Future work will extend this framework to explore dy-
namic masking strategies, ultra low bit settings, adaptive
thresholds based on task-specific statistics, and integration
with mixed-precision quantization. We believe Mask
Smooth opens a new direction for fine-grained quantization
strategies that make large-scale language models more
practical for deployment in resource-constrained envi-

ronments.
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