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Abstract

The rapid advancement of digital surveillance and monitoring systems has led to a surge in demand for real-time multi-channel
video analysis. This study proposes a system that integrates natural language query-response capabilities into a real-time
multi-channel video analysis system by utilizing Vision Language Models (VLMs) and Large Language Models (LLMs), and
conducts comparative experiments using various methods. The proposed system interfaces with legacy video analysis systems to
convert metadata and multiple images into text via the VLM, storing this in a vector database. The natural language
query-response module is designed with a multi-layered structure comprising query classification, Text-to-SQL conversion, and
Retrieval Augmented Generation (RAG)-based response generation. Performance comparisons of 10 state-of-the-art VLM models
were conducted in the VLLM environment and evaluated using both qualitative and quantitative methods. For RAG optimization
techniques, search accuracy was evaluated using RAGAS for various combinations of re-ranking, hybrid retrieval, and query
reformulation methods. This study presents a practical implementation approach for VLM-based natural language interfaces in
real-time video analysis, expected to contribute to the future development of intelligent surveillance systems.
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Category Evaluation Metric Description

Context Precision An evaluation metric measuring whether the retrieved document is relevant to the query

Retrival An evaluation metric determining whether the retrieved document contains the information necessary to
Context Recall
answer the query
. A metric evaluating how accurately the response was generated based on the information provided in the
. Faithfulness .

Generation retrieved document (context)

Answer Relevancy A metric evaluating how relevant the generated response is to the query

¥ 2. RAG T} 24
Table 2. RAG Evaluation Criteria

Elements Description Usage
Input User-entered query or question to be Used as a basis for evaluating the quality of retrieved and generated
evaluated responses
output Final response generated by the system | Used to assess how relevant and reliable the generated answer is to the

to the question

question

A predefined correct answer for

Reference Answer .
evaluation purposes

Used to assess the accuracy and relevance of the response

Documents the system searched to

Retrieved Documents
generate the response

Used to evaluate whether the documents are relevant to the question and

serve as a key metric for measuring search performance
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Table 3. Evaluation results when VLM’s responses to single images were provided in English at 15-second intervals

Gemmaa3|InternVL3| Qwen2.5| Hyper |DeepseekSmolVLM| Phi-3.5 |Gemma3|Qwen2.5|InternVL3
4B 2B VL 3B |CLOVAX| vi2 2 vision | 12B | VL 7B 8B
Parameter Size 43B | 2098 | 375B | 3.72B | 3.37B | 225B | 4.15B | 12.2B | 829B | 7.94B
e_time 244 0.23 0.74 0.55 0.85 0.50 135 | 1353 | 349 1.82
Token 23268 | 153.86 | 177.3 | 24451 | 11255 | 87.4 | 143.36 | 172.33 | 17558 | 243.53
. Accuracy 6.90 7.70 7.14 7.18 705 | 6625 | 659 7.38 7.12 7.66
CEJ;‘:I“J::I';’ﬁ Relevance | 7.76 | 845 | 775 | 805 | 7.83 | 7525 | 744 | 826 | 7.90 | 841
Richness 6.57 7.12 6.60 6.86 6.61 6.11 6.04 6.77 6.76 7.20
Clarity 8.11 8.52 8.44 8.34 8.43 8.31 8.17 8.35 8.46 8.66
Total 7.33 7.95 7.48 7.61 7.48 7.14 7.06 7.69 7.56 7.98
precision| 0.87 0.90 0.89 0.87 0.90 0.91 0.90 0.88 0.89 0.87
S?:i:te recall | 0.90 0.92 0.91 0.91 0.92 0.90 0.91 0.91 0.92 0.92
1 0.89 0.91 0.90 0.89 0.91 0.90 0.90 0.89 0.90 0.90
Quantitative rougel | 0.343 | 0446 | 0394 | 0337 | 0459 | 0401 | 0418 0.4 0.402 | 0.352
Evaluation |rouge| rouge2 | 0.113 | 0178 | 0.148 | 0128 | 017 | 0136 | 014 | 0136 | 0.154 | 0.15
rougeL | 0.202 | 0276 | 0244 | 0206 | 0283 | 0253 | 0258 | 0236 | 0247 | 022
bleu 0.331 | 0429 | 0377 | 0284 | 0488 | 0387 | 0446 | 0409 | 0365 | 0.282
meteor 0.331 | 0397 | 0366 | 0.343 | 0378 | 0284 | 034 | 0355 | 0373 | 0.376
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Table 4. Evaluation results when VLM's responses to a single image were provided in Korean at 15-second intervals
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ot &

Gemmaa3 | InternVL3| Qwen2.5 | Hyper |Deepseek SmolvLM2 Phi-.3.5 Gemma3 | Qwen2.5 | InternVL3
4B 2B VL 3B | CLOVAX vi2 vision 12B VL 7B 8B
Parameter Size 4.3B 2.09B 3.75B 3.72B 3.37B 2.25B 4.15B 12.2B 8.29B 7.94B
e_time 3.01 0.71 2.03 0.50 2.4 1.66 6.46 21.40 5.36 2.47
Token 279.6 653.19 538.44 208.90 40417 954.78 792.68 261.34 268.1 307.52
L Accuracy 6.11 3.73 5.04 6.59 4.91 1.99 3.79 6.60 6.22 5.95
S\‘j;'t'::tti';ﬁ Relevance 6.88 452 552 7.41 543 | 1875 | 4.09 7.44 6.89 6.67
Richness 5.95 3.57 4.63 6.59 4.39 1.31 3.40 6.45 5.86 5.89
Clarity 7.70 4.61 5.81 8.34 5.40 1.78 4.52 8.35 7.86 7.60
Total 6.66 4.1 5.25 7.23 5.02 1.74 3.95 7.21 6.73 6.53
precision 0.86 0.84 0.87 0.88 0.82 0.79 0.61 0.86 0.89 0.88
S?:):te recall 0.91 0.90 0.91 0.92 0.85 0.82 0.64 0.91 0.91 0.91
f1 0.89 0.87 0.89 0.90 0.83 0.80 0.63 0.89 0.90 0.90
Quantitative rouge1 0.409 0.292 0.372 0.433 0.091 0.141 0.046 0.421 0.452 0.421
Evaluation | rouge | rouge2 0.213 0.142 0.196 0.246 0.022 0.05 0.015 0.221 0.249 0.229
rougeL 0.254 0.199 0.242 0.286 0.069 0.122 0.039 0.268 0.302 0.281
bleu 0.252 0.178 0.254 0.277 0.042 0.067 0.021 0.254 0.308 0.267
meteor 0.395 0.312 0.349 0.424 0.064 0.121 0.045 0.412 0.429 0.421
Bdo] £ Azto] HOWANE AA 5ol $5E S Deepseckv2 BLE0] FE SR AL & AAE U
gl g Utk &3 gerE U g Rde FE S Woh, A2 ke 9 Aol A= Hyper CLOVAX
7} oS g A AAZ Fgo] ofele) welth RS AFLE HE2 L RS ATA EQ) o
T 4E 152 AR 9 oulAe] td VIMS] 32 #@ 991e B9 welug St A3, SFolo] 53y
o 5ot A4S Uehdoh £ 40 M = o} gl ¢ o] A &7] WiroE Helth
43t A%5S X9l InternVL3, Qwen2.5, Hyper CLOVAX, 52 152 HHo2 #Y3% & 539 ouAE 5% %
E 5. 15% 21792 OfF O[0|XIS VLMY B¥S Y0iZ 3198 220 Wt 2
Table 5. Evaluation results when VLM responses to multiple images were provided in English at 15-second intervals
Gemma3 | Intern | Qwen2.5| Hyper |Deepseek SmolVLM2 Phi-3.5 | Gemma3 | Qwen2.5 | Intern
4B VL3 2B | VL 3B | CLOVAX viI2 vision 12B VL 7B | VL3 8B
Parameter Size 4.3B 2.09B 3.75B 3.72B 3.37B 2.25B 4.15B 12.2B 8.29B 7.94B
e_time 3.73 0.62 1.54 2.04 0.98 2.20 2.60 12.65 3.86 3.19
Token 141.88 149.4 151.95 254.91 121.56 151.90 148.75 135.32 126.48 202.42
Accuracy 6.17 7.91 7.06 7.59 6.26 6.13 6.48 7.33 8.02 8.36
Qualitative Relevance 7.07 8.5 7.80 8.375 6.94 6.89 7.28 8.04 8.63 9.06
Evaluation Richness 5.93 7.16 6.30 7.05 5.64 5.42 5.86 6.52 7.02 7.58
Clarity 8.07 8.9 8.46 8.36 7.76 7.71 8.15 8.35 8.83 9.11
T/C 6.13 7.68 6.56 7.81 5.58 5.43 6.41 7.16 8.38 8.79
Total 6.67 8.03 7.23 7.84 6.44 6.32 6.84 7.48 8.175 8.58
precision| 0.89 0.89 0.89 0.87 0.89 0.89 0.89 0.89 0.90 0.89
SBcir:e recall 0.89 0.90 0.89 0.89 0.88 0.89 0.89 0.89 0.90 0.90
1 0.89 0.90 0.89 0.88 0.88 0.89 0.89 0.89 0.90 0.89
Quantitative rouge1 0.363 04 0.378 0.334 0.357 0.358 0.383 0.378 0.412 0.395
Evaluation |rouge | rouge2 0.086 0.12 0.111 0.104 0.092 0.093 0.099 0.1 0.131 0.127
rougel 0.202 0.231 0.219 0.197 0.209 0.209 0.22 0.217 0.245 0.228
bleu 0.424 0.473 0.444 0.368 0.408 0.416 0.46 0.434 0.48 0.438
meteor 0.266 0.309 0.292 0.297 0.245 0.249 0.277 0.256 0.294 0.332

-

gl
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Table 6. Evaluation results when VLM responses to multiple images were provided in Korean at 15-second intervals
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Gemma3| Intern |Qwen2.5 Deepseek| SmolVLM| Phi-3.5 |Gemma3| Qwen2.5| Intern
4B | VL3 2B| vLag | HyperCLOVAX vi2 2 vision | 12B | VL 7B | VL3 8B
Parameter Size 4.3B 2.09B | 3.75B 3.72B 3.37B 2.25B 4.15B 12.2B 8.29B | 7.94B
Images 5 5 5 5 3 2 5 5 5 5 5 5
e_time 4.03 1.29 270 | 2.08 | 1.29 | 0.84 240 5.31 3.62 22.70 6.04 5.98
Token 168.47 | 819.45 | 411.35 |249.0/261.0|228.1| 329.46 | 856.96 | 186.87 | 237.88 | 210.17 | 315.69
Accuracy 6.23 3.91 593 |7.08]|7.25]|761 3.34 2.34 5.54 6.91 7.13 6.77
Qualitative Relevance 7.125 4.48 6.57 |7.89]|8.10 | 847 3.67 2.19 5.92 7.98 8.07 7.69
Evaluation Richness 5.91 3.14 502 |6.81]6.74 | 7.12 2.55 1.38 4.89 6.48 6.36 6.18
Clarity 7.44 3.49 6.41 819|797 |8.36 3.48 1.80 7.03 7.96 791 7.31
TIC 6.04 3.39 5.11 6.73| 713 | 7.57 2.30 1.45 4.93 7.07 6.78 6.72
Total 6.55 3.68 5.81 734|744 | 7.84 3.07 1.83 5.67 7.28 7.25 6.93
precision| 0.88 0.81 0.87 | 0.87 ] 0.87 | 0.87 0.81 0.81 0.79 0.86 0.90 0.88
SBcir:e recall 0.90 0.87 0.89 |0.90] 0.90 | 0.91 0.84 0.82 0.80 0.90 0.90 0.89
1 0.89 0.84 0.88 | 0.89 | 0.89 | 0.89 0.82 0.81 0.79 0.88 0.90 0.89
Quantitative rougel | 0.468 0.21 0.369 [0.421/0.411]|0.418] 0.127 0.154 0.019 0.438 0.47 0.432
Evaluation |rouge| rouge2 | 0.204 0.083 0165 | 0.2 | 0.2 | 0.21| 0.031 0.047 0.001 0.197 0.215 0.189
rougeL | 0.271 0.139 0.228 |0.253|0.254|0.258| 0.096 0.134 0.019 0.26 0.292 0.259
bleu 0.339 0.128 0.266 |0.283| 0.27 |0.272| 0.056 0.079 0.002 0.291 0.353 0.313
meteor 0.341 0.209 0.276 |0.373|0.374]/0.386] 0.079 0.115 0.011 0.341 0.318 0.332
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Comparison of Key Evaluation Item Scores by Model

Evaluation Item
= Accuracy

Relevance
BN Richness
. Clarity
= T/C
- Total

Model

RERNCEERSCR
Fig. 3. Qualitative Evaluation by Model

O™ 5 152 A2 BGE F 57 onAE 5=

Model-by-Model BLEU Score Comparison

0.25 4

BLEU Score
°
8

0.15 4

0.10 4

Model

T8l 4. CfE Ol0|X] VLM B 512 M2 ot BLEU &M+
Fig. 4. Multi-lmage VLM Answer Korean: Quantitative Evaluation BLEU Score
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Model-by-Model METEOR Score Comparison
0.40
0373
035 0.341 0341
0332
0.318
0.30 4
0.276
w 0.25 4
g 0.209
8 0.20
5
=
015 4
0.115
0.10
0.079
005
0011
0.00 T T
« © " & '\‘° i ' & & X
o & R 5 5% & &~ & &
L P & & £ 3 :
«F & & « O\ﬁé@ o“éﬂ{ « € & g Q“\ﬁ
12l 5. ofs O[0|X| VLM B Sh=: MM 7t METEOR &
Fig. 5. Multi-iImage VLM Answer Korean: Quantitative Evaluation METEOR Score
E 7. HiX| F70of @E FE Algt
Table 7. Inference time by batch size
ch
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | 15 16 | 32 | 64 | 128
model
e_time (sec)| 2.54 | 1.36 | 1.08 | 1.07 | 0.97 | 0.87 | 0.84 | 0.79 | 0.75 | 0.74 | 0.72 | 0.68 | 0.66 | 0.64 | 0.58 | 0.5 | 0.49 | 0.47 | 0.45
THHCR Aestd, A b Al 9 Y AL Aol A EE Af-ol7] wiol s o g At
H2 919 VIM 7|0 Ado] Ho)-gwt Al2E FIfel A, 7t AdE A
A7 G e F3 AR e olE ok 9 Hlol
BE 85 ZEZES ANST, VIME 59 8AE 2 Fo| £ D5 MS I} 9 MY
2 HEs= Aol 23 Q27 F2 A7k FAH-
R4 Wk ARE EEAUT. IF HpaCLOVAXE 29 BF RES 4% 978 AAE el 1el9
N g Al nglon, Ax AN ANk A Ao BFel Be A doleAe] Basth B Aol
g7l bss AS A F7) 162 W, 249 olujxE B £ Ao BF olHAS GPT-4.1< T3 Fu oAl
Question pifficulty Analysis_type Reason
string inted string string
---- ————
T LT AAWO| WE WUH MR EDOF ASTM CHE B | vo anower 0l ZES T4 2R AIABO| HH A (H3 T 2HE 2
HY 2HE T¥E  2UuR? - D 2Lk, AlAY0l HEH2Z dolEfolaL 3 32E 5.
Ol AlASI00 T W AL WY o =50) s 3| self anemer TEE P YA Ala0] HUY MY HE HLE sk
ELETES - Hot 2T eratn AsUCH DlE A2Z JIS0IL ST
SHEH 201 AKSS B Mas el 2 vim fEd S e, gf’;;:jﬁfg‘iiufifﬂﬂ'ﬂ SRR
ST KA SHEEE HESHA WS AR EAl SRl o 2| vin T orE 2OMIA B HHE S UMD 01FS oPE o
213 Usts ZEE ZH ASADAE z

AHA{E]

oo

Ol 6. Eo| R W flsh
Fig. 6. Synthetic dataset generated

ol—A*I H|O|E‘|HI

for query classification evaluation
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AL 2 FE2 AMS SAATE F BR EdS =
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7] Al7ke] BASHH, wEbA 7153k 3 F-2 A7kl S8

3 Qwen4-4B 92 ettt A3 A 48 R
ME F2 ZA37F JSON EHo 72 723" 23 A A
L7 A BAEHon, ZEXZE oA HEH
slo] it Ao A Y HL-S 93] A Ao

¥ 8 Zo| BF Wt 4 2

Table 8. Query Classification Evaluation Experiment Results

3. Text2SQL 2

Text2SQL Fg-2 211 A& SQL ulojE 23] Ao
2 A3l Fgolty. & AFA = Qwen2.5-Coder-7B
ZeblS MeEgit) o] Rde] 32 EAL Qwen A
Z Z 7P Fe RdYor B Hold 39 A%
(HumanEval 88.4%)< Holw, Q@ Z 2 gl Ho|u), &t
SQL Wl X v}=(Spider)ol| A 82.0%2] A%< 7]53}ed, 4
2 dellg $5 7H) LM Bd5 SQL W3 o] 94

@ ot}

4. RAG M= H|1n

4.1 RAG 45 GItE 9I8t HIOEHA 4y

RAG A% H71E 98 152 71428 94 5% &9
o] 278 YAl A F53F VLM 79t Bl AE A H(FE 6087H)

Qwen3 Qwen2.5 gemma-2 kanana EXAONE Midm
Model Qwen3 | Qwen3 | Qwen3 | Qwen25 | gemma-2 | gemma-2 | kanana-1.5 | EXAONE-4.0| EXAONE-3.5| Midm-2.0
1.7B 4B 8B 7B-it 2b-it 9b-it 2.1b-it 1.2B 2.4B-it Mini-it
Accuracy 0.614 0.858 0.842 0.619 0.388 0.602 0.254 0.532 0.486 0.572
min 1.51 1.80 1.67 1.69 1.54 2.99 1.377 1.99 4.23 1.69
e_time | max 7.02 10.66 10.33 12.57 412 27.04 14.60 7.54 18.98 5.79
avg 2.23 3.912 3.49 6.87 1.68 13.34 1.47 2.734 8.77 1.93
ref_text q_type q_text
list string string
i e o iy B oo el o T 11 simple O0IT B0l BS% EA 2 AN S0 As NS AWAR FOS
[CODINHAE BTOIL 4P B2 m0l B0 SYL o ZEM 0@ DI Y B sek Km0l 2RE 001438
Ch &=M2) (" SIS 2EE00 SZH TR @D USH,. - I WM 22 EAIK S AROILE SEE %= 90 K ws
[ S OlOIMBIHE 22 HEHA Y 29U S AR 22U ‘ M T WRMOIL MM DYES 2D 22 DU TY
O 0IS2 oM TulZ F85D U0, =2 EHA zae. 0 sivle 51D 2lE AIEIE EOH

CUH U OIDIRINAS WP QRS £ A0l AE Ui
OF 9ls magUch FWH o2 ool stz Fael we.

[0l S 0IOITHE S 7HE A0l SHELIC \n\nd
DIOIAIE Fx ZRH MIxT0] =RUC. T o2l O3 T

O 7. RAG A5 BIIE Sisl MME I
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Fig. 7. Questions generated for RAG performance evaluation
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4.2 MMR(Maximal Marginal Relevance) Mg E£8t C}
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A Study on a VLM-based Natural Language Question-answering System for Real-time Multi-channel Video Analysis Systems)

&5 olm A ¢} FALE 750l k. vt # A A"
O AdS ASSIEE, AdoA 2 8 2ETL Mgy
71E 7lggt) £ A3dME MMRS 3-83te] FA19] &
A H g dd & Al s S ARSgth 7 Al
I E top kE 37NE AA, 16401EY A F 16x3
=487]¢] $A15F HAEE 7jWlo 2 MMR WHH S 243
t} 48709 frAMS HIAES MMR 7|HEC.Z 91 E AR
g3k 5 A9 U E AEsith O7 82 1631d9lA top k
INE ALEYE W, A HEER HeE 9] Ad &
HojFEth 54 Ade MFEA ¥ thds Adel X

= A4S ety B Ao s zF 8 top k 370,
Z 16x3 = 48712 FAR H|l2EES SR F e g AE
o tiel FWAE A &8t FAIEE 7|V E st 1671

BAAI/bge-m3
google/embeddinggemma-300m
2000 = Qwen/Qwen3-Embedding-0.68

mm  intfloat/multilingual-e5-large-instruct

1500

Count

1000

500

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Channel

MMR not applied

BAAI/bge-m3
google/fembeddinggemma-300m
E Qwen/Qwen3-Embedding-0.6B
= intfloat/multilingual-e5-large-instruct

800 A

600 -

Count

400

200 1
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Channel

MMR applied

9 10 11 12 13 14 15

121 8. 16322 top_k 3 ZE A| RAL HIAEZ MEHE A9 A
Fig. 8. Number of top channels selected as similar text when applying top_k 3 to 16 channels

Name Status

vd_analyzerld_016_multi_2_3 google_embeddinggemma-

[ )
300m_google_embeddinggemma-300m green
vd_analyzerld_016_multi_2_3_intfloat_multilingual-e5- ® aresn
large-instruct_intfloat_multilingual-e5-large-instruct g
vd_analyzerld_016_multi_2_3_Qwen_Qwen3-Embedding-

® green

0.6B_Qwen_Qwen3-Embedding-0.6B

12! 9. Qdrant HE{ H|O|E{H[0|A0 VLMS

Vectors Configuration

Points (Approx) Segments Shards . N
(Name, Size, Distance)
dense 768 Cosine

608 8 1
sparse Sparse
dense 1024 Cosine
608 8 1
sparse Sparse
dense 1024 Cosine
608 8 1

sparse Sparse

Soff HEZ HEE0 X

Fig. 9. Vector data is converted to vectors via VLM and stored in the Qdrant vector database
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£ FE31, A2 MMR WS 53 5719 BAE BAAI/bge-reranker-v2-m3, ¥4¥ld 92 BAAl/bge-m3
A7 gtk < AAste] F7F AdES At

4.3 HE HE 3 27 MY 4.4 RAG g5 M2 S8t U
Ay wE RdZ= BAAlbge-m3, google/embed- AHd, A, g BdS AHs & FIHE e
dinggemma-300m, Qwen/Qwen3- Embedding - 0.6B, in- M-S Al Al 71 S AIbe) o] F7F R ES
tfloat/multilingual-e5-large-instruct % 4715 AM-8151.0.0, AAIZE Aol S T2 E= W0 g AAHIATH A
g)2@7 2492+ Qwen/Qwen3-Reranker-0.6B, BAAI/bge- HA = Ae] g il deo] A4, 7 WA= stolBy
reranker-v2-m3, jinaai/jina-reranker-v2-base-multilingual- T AM, v g2 T 7] e B AE8E 7
S-g-ato] vtk 18 9+ Qdrant HE Ho]E W o]~ il RAGASE &3 RAG H7H= a8tk 2o A+
o VLM< 53l W3t g2 EVF MHE H4d E5S 4 A B/ EhoA FAl 3 7hssh] Wil F
oFoh 2 Az 9GS XA BEh E 102 Al A s
7 RAGASE o83t ZE2E Aukel N 77} g AES A3s Jehdth A3 A 92ES
€ SAsTh & 9v RAGASE T3 RAG %H7F 23k 7IWe= AEes A4S, A4dE 282 5T RAG &
L}EME} 0.25, 0.5, 0.75< Hl°lHE 7] X2 HE3) Ho g frpskaly] wzell Ak dolut ome] tdS
< Wl 489 ol sFete 25%, 50%, 75%S Pl gte) Ttetslz] 91s) F7F tlolBl & &-8ate] A M sisith
ZA (total)= 0.5 T7+] %k (context precision + faithful- E A7 ME AIHUBPIY] o] 435 CCTV YAHe F7F
ness)2¢] Folth HE A, d¥id Edo] BAAI HolB & #5383t o143 F CCTV 9742 12744 o]
bge-m3¥ A5 5ol 7P ¢ om, fHA Rde & BEEY, A, A, 7= Tk, AA uE, J, 771
Afo]E Ho ] A ghsket thekgt vy Rds gRAE o] A%, HolE 8 9 ) ¥X|, 73 d5) s s,
£ HaE RAG H7HE 9l A4 | HlolHAle A, Z 700A17K8,40071) 2] ¥t S dl o]l o]t} 3 Hl o]
deg WE Rdz 2l AE 3 WE A4S T 2 T 451 B FYCE T 400MME 52 AR £
HAE T2 3y HAES 7|RCE 3 RAG HH A3le] VLM B3l H2ER HEsty W3kaelly, g2
sl o] Foixlom, s wRel] ARS-g LLM 2d A9 EZ dWd HEE 3l MHE HEksh & HY dolyy|
7 ZdolM AR Qwen/Qwen3-4.0BE AHE-SHITH o] 2ol Joje] el AMEHA #7stA
BAAI/bge-m3E= MTEBOIA A2 AF A% 99%Z 71238} AIHUB®| F7} dlo|EjAl & ARE-51A] 98-S 7§%, 28] A
o, gehr g 5 59 6,800%, Uuld 37].4 1024, A} TS 3t ARLS A AE HUL dato)| T o] HX
EZ T 8194 Zieth & dFdAE gEA Ed= T AlEddE oA Al E YERTh o2k olf =
# 9. RAGASE 5% RAG H7h &1t
Table 9. RAG Evaluation Results via RAGAS
modell_Reranker baai jinaai dragonkue
items Embedding | baai | google | qwen3 | intfloat | baai | google | qwen3 | intfloat | baai | google | qwen3 | intfloat
0.25 0.7 0.325 0.5 0.7 0.7 0.333 0.5 0.7 0.7 0.325 0.5 0.5
pfzzit:ifn 05 | 0804| 07 | 0756 | 0804 0.806 | 07 | 0.756 | 0.804 | 0.806 | 07 | 0.75 | 0756
0.75 1.0 0.833 | 0.917 1.0 1.0 0.887 | 0.917 | 0.975 1.0 0.833 | 0.887 | 0.917
0.25 0.667 0.5 0.592 0.6 0.625 0.5 0.556 | 0.571 | 0.667 0.5 0.6 0.667
faithfulness 0.5 0.833 | 0.714 0.8 0.8 0.833 | 0.675 | 0.778 | 0.75 | 0.818 | 0.714 0.8 0.8
0.75 1.0 0.875 1.0 1.0 1.0 0.875 1.0 1.0 1.0 0.875 1.0 1.0
total 0.8185| 0.707 | 0.778 | 0.802 | 0.8195| 0.6875| 0.767 | 0.777 | 0.812 | 0.707 | 0.775 | 0.778
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Table 10. Evaluation results when using query reformulation, hybrid search, and both methods

ot 2t

AIHUB dataset not added AIHUB dataset added
method basic hybrid+ hybrid+
items hybrid reformulation yor . hybrid reformulation vor )
refomulation refomulation
0.25 0.7 0.7 0.7 0.7 0.5 0.7 0.7
context
- 0.5 0.804 0.806 0.833 0.833 0.806 0.95 0.887
precision
0.75 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.25 0.667 0.667 0.537 0.5 0.5 0.5 0.461
faithfulness | 0.5 0.833 0.833 0.733 0.75 0.714 0.733 0.714
0.75 1.0 1.0 0.889 0.9 0.9 0.881 0.884
total 0.8185 0.8195 0.783 0.7915 0.76 0.842 0.801
AY2E AUEE FANE FAVF A8 Be] JEAS 9 kS A B B ATl A VIM A%
B7keke Amolw, AL gwlol AAR AL 7 UUED RAG HH 8 WS 02 HERY Al A2
E)oA Agd ARE 7|RteE dupt A FsHA A= g 7ol e A8 7hsstm, 53] AAIZE At F23 5
A=AE H7hshe Asxelvh webx AIHUBOIA 74 & Wopoll A &3 F3 AT Aolrh 2EAS 7Nt
AHEElE FE O] 7 ol Aol YRle R Helth TR A 5 TA A AT AP =0l F
Sfolue = whge N A D 2 Aok Itk & A7E Feke 6] 7)ejd Ao s|hHE. FF AP
ol& At wol7t A &oi7t oid Ted w5 = o] el AAIZE AR E s AE 75 Foli AT
Fol7] ME o2 Helth Wi, AIHUBS| 71 HolBAle  GPUE 2838k 1 &9 97he 3 d4oltt =3,
AREE 73S, Ao AT mE HEAE JUETE A4 T8 AERS FEee Q4 Qokt AR AEE 7]
FEE A A F v WO 2 gk o]l s B 5, dlAA F EA A At
A TP Bl e AFE ASE Aotk

& AZHE B A MY 7o) gl 8 ARt
o] T2 228 gk 2l A AdE 7HA L8
AZbe dlEete] &% RdS dEaiglon, £d 4t B
o AzE B exgu s A DN A8 e
g e Ean RdS ARSI & A7 23S TR,
VLM®] 45> CLOVAX-Vision®] 7} -39, Ho
R Rdd A9 SHelE Qwen3-4.0B RYS £83519
o0, RAG 7|9t §HE 91 g WE <k 27 = bee
EdE AHESIATE RAG 4% AAdS Sl8) Ao A4
3 shol B = WY & E=95kel RAGAS #7HE &3l
Aee AT & A7 e 9 B 3 A oA
wel 5o Fopll AyHoR & A 59 V)€
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