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요 약

본 논문은 원격탐사 변화 탐지에서 잡음·센서 왜곡에 강인한 성능을 위해 광학 영상과 대응 깊이 정보를 함께 사용하는
Depth-Guided Change Detection Network (DGCD-Net)을 제안한다. 두 입력에서 추출한 특징을 Adaptor 모듈로 융합해 변화 영역을
식별하는 핵심 표현을 구성하고, 이를 기반으로 변화 맵을 생성한다. 또한 Semantic Distortion Filter (SDF)로 깊이 추정 과정의 왜곡·
잡음을 보정해 실제 기하 구조를 더 정확히 반영하며, 변화 단서에 집중한 안정적 특징 학습을 유도한다. WHU-CD에서 F1-score 
96.23%로 FTA-Net 대비 약 1% 향상된 결과를 보여준다.

Abstract

This paper proposes DGCD-Net (Depth-Guided Change Detection Network, DGCD-Net) for remote-sensing change detection 
robust to noise and sensor distortions. Optical images and corresponding depth are encoded and fused via an adaptor module to 
form a discriminative representation and generate a change map. A Semantic Distortion Filter (SDF) corrects noisy depth-estimation 
artifacts to better reflect scene geometry. On WHU-CD, DGCD-Net achieves 96.23% F1, about 1% higher than FTA-Net.
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Ⅰ. 서 론

변화탐지는동일지역의다중시기영상데이터를비교

하여 변화의 유형, 크기, 위치를 분석하는 기술로, 국토 모
니터링, 자연재해대응, 도시확장분석등다양한분야에서
활발히 활용되고 있다[1]. 그러나 다중 시점에서 획득된 원
격 탐사영상은촬영 시간대, 그림자, 계절적차이 등외부
요인 때문에 이질적인 특성을 보이게 된다. 이러한특성은
밝기나색상차이및기하학적불일치를유발하여, 변화영
역을 정확하게 탐지하는 데 큰 어려움을 일으킬 수 있다. 
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이런 문제를 해결하기 위하여 최근에는 딥러닝 기술을 적

용하여 원격 탐사 영상 분석의정밀성과 효율성이크게향

상했다. 이는 딥러닝 기술이 공간적·시간적 특징을 동시에
학습할수있어, 고해상도및광범위한지역에서수집된대
규모 데이터에 유용하게 적용될 수 있기때문이다. 최근에
는 U-Net[2], ResNet[3], Transformer[4] 등과 같은 딥러닝 아
키텍처를적용하여고해상도원격탐사데이터를활용한정

량적분석과 광범위한지역의 변화를파악할수있게되었

다.
변화 탐지분야에는 다양한 딥러닝모델이 활용됐다. 초
기 연구는 영상 분류 모델을 기반으로 각 시점의 영상을

독립적으로 분류한 후, 두결과를 비교하여 변화를 추론하
는 접근이 시도되었다[5]. 이후에는 객체 탐지 모델을 활용
하여건물이나 도로등주요 객체의 위치를 Bounding Box 
형태로추출한뒤, 시점간객체의존재여부나위치변화를
분석하는 방법이 제안되었다[6]. 그러나 변화 탐지의 핵심
목표는 픽셀 단위에서 변화 영역을 정밀하게 분할하는 데

있기때문에, 최근연구들은주로영상분할모델을기반의
모델 구조를 중심으로 발전하고 있다. 특히 U-Net과
Convolutional Neural Network (CNN)과같은구조는픽셀
단위 예측에 적합하여 널리 활용되고 있으며[7], ResNet[3], 
VGGNet[8] 등의 백본 (Backbone)을 Siamese 구조와 결합
함으로써시점간특징차이를효과적으로학습한다. 더나
아가 Transformer 및주의메커니즘 (Attention Mechanism)
을 이용하여 더욱 정교한 변화 표현을 학습하는 방향으로

연구가 확장되고 있다[9-12]. 하지만 기존 연구들은 높은 정
확도 향상에도 불구하고, 수용영역 (Receptive Field)의 제
한과 장거리 의존성 (Long-Range Dependency) 부족으로
인해변화경계가불완전하거나내부가불연속적으로검출

되는 한계가 있다.
최근 변화 탐지 기술은 이러한 문제를 해결하기 위하여

보조 정보를 활용하는 연구들이 진행되고 있다. GCNet[11]

은백본에서추출되는특징을 이용하여 암시적 (Implicitly) 
변화 사전 정보 (Change Prior)를 활용한 멀티스케일 특징
융합을 통해 경계 불완전성과 내부 공백 현상을 효과적으

로 완화하였다. 하지만, 암시적 변화 사전 정보 (Implicit 
Change Prior)는백본으로추출되는특징에큰영향을받으

며잘못추출된특징으로부터전파되는오류에민감하다는

한계가있다. 이를개선하기위하여본논문의선행연구에
서는명시적변화사전정보 (Explicit Change Prior)를활용
하는변화탐지기술을개발하였다. SDCD-Net[13]은간단한

형태의변화탐지구조의 입력으로영상과 함께 깊이 정보

를 활용하는 경우 F1-Score 관점에서 정확도 성능 향상이
가능함을 보였다. 하지만, SDCD-Net이 깊이 정보 추출에
활용한 DepthAnything[14]은 일반적인 자연 영상만을 대상

으로 학습된 모델이기 때문에, 원격탐사 영상에 적용할 경
우추출되는깊이정보에많은잡음이포함된다. 이에따라
기대했던 수준의 정확도 성능 향상을 이루지는 못하였다. 
PDE-Net[15]은 CNN으로구성되는비선형필터를활용하여
바닥과 같이 평지에서 발생하는 잘못된 깊이 정보를 억제

하였다. 하지만, PDE-Net은 의미 정보의 부족으로 고가도
로와 같은 비관심 객체와 관련된 잡음을 억제하지 못하여

시각적 결과 대비 F1-Score 관점 정확도 성능은 저하되는
한계를 보였다. 
이러한 한계를 극복하기 위하여, 본 논문에서는 의미적
일관성을강화하여깊이정보의왜곡과잡음을효과적으로

억제하고, 이를통해추출된명시적변화사전정보를기반
으로변화탐지구조를확장하였다. 깊이정보의품질저하
로 인한 오탐 (False Detection)과 누락 (Miss Detection)을
완화하기위하여의미기반왜곡필터 (Semantic Distortion 
Filter, SDF)를 도입하였으며, 깊이 정보와 영상 특징을 융
합하여변화탐지를 위한 단서를더욱명확히반영하는깊

이 정보 기반 변화 탐지 네트워크 (Depth-Guided Change 
Detection Network, DGCD-Net)를 제안한다. 제안하는
DGCD-Net은 명시적 변화 사전 정보로써 깊이 정보를 의
미적으로 활용하여 정교한 변화 탐지가 가능함을 보였다. 
WHU-CD[16]를이용한 실험에서 DGCD-Net은 F1-score 관
점 96.23%로기존연구들대비높은수준의정확도성능을
달성하였으며 주관적 성능 비교에서 변화 탐지 결과의 경

계 불완전 문제와 내부 불연속 문제를 효과적으로 개선됨

을 보였다. 
본 논문의 구성은 다음과 같다. 2장에서는 관련 연구를
소개하고, 3장에서는 제안하는 DGCD-Net의 구조와 동작
원리를 상세히 기술한다. 4장에서는 실험 및 결과 분석을
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통해제안방법의 성능을평가하며, 마지막으로 5장에서는
본 연구의 결론을 제시한다.

Ⅱ. 관련 연구

서로 다른 시점에 촬영된 동일 지역의 원격탐사 영상은

밝기나색상차이, 기하학적불일치로인해변화영역을정
확히 구분하기 어렵다. 이러한한계를보완하기위해 깊이
정보는 구조적 변화를 식별하는 중요한 단서로 활용될 수

있다. 이를바탕으로본 논문에서는깊이 정보를 활용하는
변화 탐지 기술 개발을 위한 관련 연구를 소개한다.

1. 변화 탐지

원격탐사 영상의 발전으로 서로 다른 시점에 촬영된 영

상을 활용한 변화 탐지의 응용 범위가 크게 확장되었다. 
변화 탐지는 동일한 지역의시계열 영상을 비교하여 건물, 
도로, 산림 등 지표면의 토지 이용 및 토지 피복 변화를
분석하는 핵심 기술이다. 그러나 촬영 시점, 조명, 기상, 
계절 등의 외부 요인으로 인해 영상 간 밝기나 색상 차이

및 기하학적 왜곡이 발생할 수 있으며, 이는 모델의 변화
식별 정확도가 저하할 수 있다. 특히 원격탐사 영상은 복
잡한 배경과 다양한 지형적 요소를 포함하고 있어, 의미
있는 변화를 안정적으로 추출하는 데 여전히 어려움이 존

재한다[17]. 
이러한 문제를 해결하기 위해 다양한 딥러닝 기반 변화

탐지 기법이 제안됐다. 대표적으로 CNN 기반 변화 탐지
알고리즘[18]은변화탐지를네단계로수행한다. 그과정은
(1) 시점 간 차이를 반영한 차 영상 생성, (2) 의미 분할을
통한 변화 후보 영역 추출, (3) 클러스터링을 통한 잠재적
변화 영역의 그룹화, (4) 분류기를 이용한최종 변화맵 산
출과같다. 이러한구조는 Synthetic Aperture Radar (SAR) 
영상[19]과같이잡음이많은환경에서도효과적으로작동하

며, 기존전통적방법보다높은신뢰도의결과를제공한다. 
한편, ChangeMamba[12]는 Mamba 구조를 변화 탐지에 도
입한최신모델로, 시공간적관계모델링을통해정밀한변
화정보를효과적으로추출한다. 이는국소정보와전역정

보를동시에활용할수있어 CNN의제한적수용영역문제
와 트랜스포머의높은 계산 복잡도 문제를 모두 완화한다. 
또한 이 구조는 이진 변화 탐지뿐 아니라 의미적

(Semantic) 변화 탐지 건물 손상 평가와 같은 다양한 응용
에서도 우수한 성능을 보였다. 
이와같은다양한딥러닝기반접근법들이변화 탐지성

능을 향상해 왔으나, 대부분의 기존 방법은 광학 영상

(Optical Imagery)과 같은단일 모달리티 (Single Modality) 
만을입력으로사용한다. 이러한접근은조명변화, 계절적
요인, 그림자, 배경왜곡등외부환경요인에민감하여, 실
제 변화가 없는 영역에서도 오탐 (False Detection)이 발생
하기 쉽다[18]. 예를 들어, 도로, 적재물과 같은 건물과비슷
한 패턴을건물의변화로 잘못 인식하는사례가 발생할수

있다.
본 논문에서는 이러한 문제를 완화하기 위하여 기존의

단일모달리티 기반 변화 탐지 방식을확장하여 깊이 정보

(Depth Information)를 추가로 활용하는 다중 모달리티

(Multimodal) 변화탐지모델인 DGCD-Net을제안한다. 원
격탐사영상에서깊이정보는지면과대상물체간의거리

차이 및 고도 분포 (Elevation Distribution)를 반영하므로, 
광학영상의밝기나 색상 변화에영향받지 않고 실제 구조

적 변화를명시적으로구분할수있는핵심단서로활용될

수 있다.

2. 깊이 정보 추정

깊이정보는 조명, 그림자, 계절변화, 촬영 시점 차이와
같은외부요인으로부터비교적 영향을덜 받기 때문에왜

곡이적다. 이러한특성으로인해, 깊이정보는평면정보만
담고있는 2D 영상에공간적·기하학적단서를제공하여객
체의 크기나 형태, 위치 관계를 보다 정확하게 추론할 수
있다. 따라서복잡한장면구조를이해하고객체간의구성
을 인식하는 데 중요한 역할을 하며, 의미론적 분할 성능
향상에도 기여한다. 
깊이 정보는 일반적으로 다중 시점 기하 (Multi-View 

Geometry, MVG) 기반영상분석이나, Lidar와 RGB-D 센
서 등과 같은 깊이 센서를 활용하여 획득할 수 있다[20,21]. 
MVG 기반접근은여러시점에서촬영된영상을이용하여
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기하학적 삼각 측량을 통해 깊이를 추정하지만, 영상 간
정합 정확도에 크게 의존하며 넓은 지역이나 상공 촬영

영상에는 시차 (parallax)가 작아 깊이 추정이 어렵다. 한
편, 깊이 센서를 활용하는 방법은 장비의 높은 비용과 데
이터취득의 물리적제약으로 인해 대규모원격탐사환경

에 적용하기 어렵다. 이러한 이유로 원격 탐사 영상에는
정확하고일반화할 수있는깊이정보를 얻는 것이 해결할

과제이다.
최근에는딥러닝기술의발전으로단일영상만으로도높

은 품질의 깊이 마스크를 생성할 수 있는 단안 영상 기반

깊이 추정 (Monocular Depth Estimation, MDE) 연구가활
발히 진행되고 있다[22,23,24]. 대표적으로 DepthAnything은
대규모학습데이터와효율적인네트워크설계를바탕으로

Zero-Shot 환경에서도 높은 정확도의 깊이 추정이 가능하
다는장점이있다. 그러나이는주로정면시점 (front-view)
에서 촬영된 장면에 최적화되어 있어, 상공 시점 (aerial- 
view)에서 촬영된 원격탐사 영상에서는 깊이 추정의 정확
도가 저하되는한계가있다. 이러한문제를개선하기 위해, 
본 연구에서는 DepthAnything으로부터 추출한 깊이 정보
에 의미 정보를 활용한 왜곡 억제를 수행하는 의미 기반

왜곡 필터인 SDF를 제안한다. 제안하는 SDF는 광학 영상
으로부터 활용 가능한 의미적 단서를 이용하여 깊이 맵의

잡음을 제거하고 구조적 왜곡을 보정함으로써, 건물의 형
태와 구조를 더 정확하게 복원한다.

Ⅲ. 제안하는 깊이 정보기반 변화 탐지 기술

DGCD-Net이변화탐지를수행하는과정은크게공간적
분석, 시간적 분석, 그리고 변화 맵 생성 단계로 구성된다. 
공간적분석단계는 한시점의 영상에서변화탐지대상의

기하적, 구조적, 그리고 의미적 정보를 추출한다. DGCD- 
Net은 정확하고 정교한 변화 탐지를 위하여 공간적 분석
과정에 깊이 정보 기반 명시적 사전 정보 (Depth-Guided 
Explicit Prior Knowledge)를 활용한다. 이는 Depth- 
Anything으로부터추출된깊이정보에서의미정보를활용
하는 비선형 필터인 SDF를 이용하여 왜곡된 깊이 정보를
억제하며, 이를통하여추출되는의미정보기반가상깊이
맵 (Semantic-Guided Pseudo Depth Map, SGPDM)을사전
정보로활용하여더욱 정교한 공간적 표현을 추출한다. 시
간적 분석 단계에는 절대 차이값을 이용하여 시간별로 추

출된공간적표현간변화단서를추출하며이는최종변화

맵 생성에 활용된다. 그림 1은 본 논문에서 제안하는

DGCD-Net의 구조이다. 그림의 우측은 제안하는 DGCD- 
Net의 전체적 과정이며 좌측은 DGCD-Net이 SDF를 통하
여 추출되는 SGPDM을 활용하는 과정이다. 
본 장에서는 제안하는 DGCD-Net의 구성요소를 단계별
로상세히기술한다. 먼저 3.1의선행연구에서는기존방법
들의한계와본연구의설계배경을간략히정리한다. 이어
서 3.2의 SDF에서는의미정보를활용하여깊이왜곡을억

그림 1. 제안하는 DGCD-Net 구조
Fig. 1. Overview of the proposed DGCD-Net
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제하고 정제된 SGPDM을 생성하는 과정을 설명한다. 
Multimodal Feature Fusion 절에서는 광학 영상과깊이정
보를통합하여공간적·기하학적특징을효과적으로결합하
는방법을제시한다. 다음으로변화맵생성절에서는시간
적차이를기반으로변화단서를추출하고최종변화맵을

생성하는 과정을 다룬다. 마지막으로 구현 세부사항 절에
서는네트워크구조, 학습 설정, 라벨 생성과 같은구현 세
부 사항을 기술한다.

1. 깊이 정보를 명시적 사전 정보로 활용한 변화
탐지 방법

깊이정보는영상 내객체의기하적구조와거리정보를

포함하고 있어, 조명 변화, 그림자, 계절적 차이와 같은 외
부환경요인에비교적둔감하다. 이러한특성으로인해깊
이정보는복잡한 도시 장면이나건물밀집지역에서발생

하는 비의도적 변화 (illumination-induced variation)를 완
화하고, 실제 구조적변화를구분하는데 효과적인 단서로
활용될수있다. 이러한가능성에기반하여, 선행연구에서
는 깊이 정보를 변화 탐지 모델에 직접 통합하는 다양한

시도가 이루어졌다.
첫 번째 연구에서는 Simple Depth-based Change Detec- 

tion Network (SDCD-Net)[13]를제안하여광학영상과깊이

영상을 동시에 입력으로 사용하는 구조를 설계하였다. 실
험 결과, 깊이 정보를 추가로 활용한 모델이 기존의 단일
광학 영상기반 모델대비 F1-Score가 미세하게향상된 결
과를 보였으며, 이는 깊이 정보가 변화 탐지 성능 향상에
실질적인기여요인임을실험적으로입증한결과로해석된

다. 이후 연구에서는 단순한 깊이 활용의한계를보완하기
위해, Pseudo Depth Estimation Network (PDE-Net)를제안
하였다. PDE-Net은 DepthAnything 모델을통해추출된 단
안 기반 깊이 정보에 포함된 잡음을 완화하고, 건물 영역
중심의 Pseudo Depth Map을생성하여 SDCD-Net[13]의 입

력으로활용하였다. 이를 통해 왜곡이 억제되는 변화 정보
를 확보함으로써 건물과 지표면을 명확히 구분하고, 세밀
한변화탐지가가능함을보였다. 그러나이방법은지표면
에서 발생하는 왜곡만을 억제할 뿐, 특정 대상 (예: 건물, 
고가도로등)의 변화를 중점적으로 탐지해야 하는 응용환
경에서는 여전히 비관심 영역의 오탐 (False Detection)이
빈번히 발생하는 한계를 보였다. 
기존 선행 연구에서 활용한 깊이 정보는 단안 기반 깊

이 추정 결과 또는 지표면 중심의 왜곡 억제에 한정되어

있으며, 건물 변화 탐지와 같이 특정 응용을 고려한 상황
에서 비관심 객체 (non-salient object)로부터 발생하는 의

그림 2. Semantic Distortion Filter (SDF)의 학습 및 추론 과정
Fig. 2. Training and inference process of the Semantic Distortion Filter (SDF)



128 방송공학회논문지 제31권 제1호, 2026년 1월 (JBE Vol.31, No.1, January 2026)

미적 왜곡 (Semantic Distortion)은 충분히 반영되지 않았
다. 이러한 한계를 극복하기 위하여 본 연구는 의미 정
보를 활용하여 깊이 왜곡을 억제하는 비선형 필터인

SDF를 제안한다. SDF는 Depth Anything으로부터 추출
된 깊이 정보와 광학 영상으로부터 활용 가능한 의미적

단서 (Semantic Cues)를 융합하여 왜곡된 깊이 영상을 정
제하며, 이를 통해 Semantic-Guided Pseudo Depth Map 
(SGPDM)을 생성한다. 생성된 SGPDM은 DGCD-Net의
명시적 사전 정보 (Explicit Prior)로 활용되어 공간적 분
석 단계에서 신뢰성 있는 구조적 표현을 추출하는 데 기

여한다.

2. Semantic Distortion Filter

본 논문에서 제안하는 SDF는 깊이 정보에서 건물과 같
은 관심 객체 외의 영역으로부터 발생하는 의미적 왜곡을

효과적으로 억제하기 위해 설계되었다. 일반적으로 깊이
정보는 장면 내의 거리정보를제공하지만, 의미적 구분을
포함하지 않기 때문에 나무, 도로, 그림자와 같은 비관심
객체로부터의깊이변화가탐지과정에서잡음으로작용할

수있다. 이러한왜곡을억제하기위해서는관심영역과비
관심영역을구분할수있는의미적단서 (Semantic Cue)가
필요하다. 이를 위해서는 사전에 학습된 (Pretrained) 의미
적분할 (Semantic Segmentation) 모델을활용할수있으나, 
이는 추론 복잡도의 증가와 실시간 적용의 체약을 초래한

다. 
이러한 한계를 극복하기 위해 본 논문에서는 광학 영상

을 활용하여 깊이 정보의 의미적 왜곡을 간접적으로 보정

하는 SDF를제안한다. 깊이영상과이에대응하는광학영
상은조기융합 (Early Fusion)을통해결합하며, 이융합된
입력은 사전에 학습된 U-Net 기반의 Channel-Spatial 
Attention (CSA) 네트워크[28]를 통하여 처리된다. CSA 네
트워크는 입력으로부터 의미적 단서를 추출하고, 이를 통
해 SGPDM을생성한다. SGPDM은위치별로왜곡발생가
능성을 추정하여 깊이 정보 내의 의미적 왜곡을 억제하는

적응형게이트마스크 (Adaptive Gating Mask)로사용된다. 
결과적으로 SDF는 깊이 정보 내 의미적 왜곡을 제거하면
서도, 추가적인 의미적 분할과정 없이 효율적으로 동작하

여 깊이 기반 변화 탐지의 강인성을 향상하게 한다. 그림
2는 SDF의 학습 및 추론 과정이다.

SDF는 깊이 영상 (D)과 광학 영상 (I)을 입력받아

SGPDM 을생성하도록학습한다. SDF의추론과정은다
음과 같이 정의된다.

(1)

여기서 은 광학 영상과 깊이 영상의 조

기 융합 (Early Fusion) 과정을 의미하며, SDF는 U-Net 기
반의 CSA 네트워크로 구현된다. 네트워크의 출력은 의미

적왜곡을억제한깊이지도인 이다. SDF의학습과정에

서는 정답 깊이 지도 (label) 를 다음과 같이 생성한다.

(2)

 
깊이 영상 에 건물 영역에 해당하는 의미 마스크

를 곱하여 비관심 영역의 깊이 값을 제거

한 지도를 학습용 타겟으로 사용한다. 여기서 은

건물(관심 영역), 은 비관심 영역을 의미한다. 이

렇게 생성된 는 Semantic-Guided Ground Truth로서
SDF가 건물 영역 중심의 깊이 보정에 집중하도록 유도한
다.

(3) 

여기서 SDF의파라미터 는예측결과 과정답  사
이의 손실 함수를 최소화하도록 학습된다. 

(4)

여기서 은 pixel-wise reconstruction loss로 L1 손실
을 사용한다. 이 목적함수는 SDF가비관심 영역의 왜곡은
억제하면서도, 관심 영역의 깊이 구조를 정밀하게 복원하
도록 학습을 유도한다.
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3. Multimodal Feature Fusion (MFF)

깊이 정보는 광학 영상에서 얻기 어려운 장면의 구조적

단서 (Structural Cue)를 제공하므로 변화탐지의신뢰도를
향상할 수 있다. 그러나 광학 영상과 깊이 영상은 물리적
의미와 통계적 분포가 상이하기 때문에, 단순히 병합

(Concatenation)만으로는두모달리티간의상호보완적 정
보를 효과적으로활용하기어렵다. 특히깊이지도는 조도, 
반사, 질감의영향을받지않지만, 광학영상은이러한요인
에 민감하므로 적절한 융합 구조 (Fusion Architecture) 없
이결합할때오히려특징불일치 (Feature Inconsistency)를
유발할수있다. 이러한문제를해결하기위해본논문에서
는 Adapter 기반의 Multi-Modal Feature Fusion (MFF) 모
듈을 제안한다. MFF는 SDF를 통해 정제된 깊이 정보

(SGPDM)를 광학 영상으로부터 추출된 특징 (Feature 
Representation)에 명시적으로 반영 (Explicitly Inject)함으
로써깊이기반구조단서를효과적으로통합하는다중모달

융합 (Multimodal Fusion) 메커니즘을제공한다. 이를통해
DGCD-Net은광학영상의시각적변화(밝기, 그림자등)에
는 둔감하면서도 구조적 변화 (Structural Displacement)에
민감한 변화 표현을학습할 수있다. 그림 3은 Multimodal 
Feature Fusion을 위한 Adapter 구조이다.

광학 영상으로부터 추출된 특징 와 깊이

정보로부터 얻어진 특징 은 서로 다르게

통계적 분포와 표현 공간을 갖는다. 두 표현 공간 차이로
인한 특징 불일치를 보정하기 위하여 Adapter 모듈은 두

특징에 결합을 수행한다. 그 과정은 다음과 같이 정의된
다.

(5)

 

여기서 은  합성곱 (Convolution) 연산을

이용한투영 (Projection) 변환으로광학특징 를깊이특

징 와 유사한 통계적 분포로 사상한다. 은 element- 
wise multiplication으로 깊이 특징이 광학 특징의 반응을

조절하는 adaptive modulation 역할을수행한다. 은비

선형성을 위한활성화 함수로 Leaky ReLU 함수를사용한

다. 은또다른  합성곱연산으로조정된특
징을 다시 광학 특징 공간으로 되돌리는 역 투영 (Inverse 
Projection) 연산이다. 이과정을단계적으로표현하면다음
과 같다.

(6)

즉, Adapter는두 모달리티의 통계적 불일치를 최소화하
기위해 Transform – Inverse Transform 구조를통해깊이
특징을 광학 특징에 정렬 (Alignment)시킨다. 이렇게 변환

된 는 MFF 내에서백본의 다음 단계 (Stage) 및 시간적
분석의 입력으로 사용되어 신뢰성 있는 구조적 특징을 추

출한다. 

그림 3. Multimodal Feature Fusion (MFF)을 위한 Adapter 구조
Fig. 3. Adapter structure for Multimodal Feature Fusion (MFF)

′ ′
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4. 변화 맵 생성

변화맵생성모듈은두시점의입력영상 ( ) 과이에

대응하는깊이정보 ( ) 간의융합을통해추출된단계

적특징 과 을입력으로 받아 단계적업

샘플링 (Upsampling), 덧셈 (addition), 채널 결합 (concate- 
nation)을반복하여최종변화맵을생성한다. 먼저각단계

에서 두 시점의 절대적 특징 차이를 계산하여 변화 후보

특징을 구한다.

(7)

여기서 는시점 으로부터추출된  번째특징,  

는시점 으로부터 추출된  번째 특징이다. 는두 시

점 간의 구조적 변화를 반영하는 기본 입력으로사용된다. 

가장 상위 레벨 특징 은  합성 곱 연산과 ReLU 
활성화를거쳐업샘플링가능한형태로변환된후, 하위단
계 특징과의 업샘플링 및 덧셈 연산으로 단계적융합된다.

(8)

여기서 는시점 의업샘플링단계에서추출된상위

특징 맵을 의미하며, 는 동일 단계에서 하위 계층으로

부터 전달되는 보조 특징 맵을 나타낸다.

(9)

각 단계에서 융합된 특징은 추가적인 업샘플링과 채널

결합을 통해 다중 해상도 정보를 보존한 통합 특징 맵을

형성한다. 이러한 계층적 융합 구조를 통해 고해상도 세부
정보와 저해상도 구조 정보가 상호 보완적으로 결합하며, 
결과적으로 공간적 정합성과 구조적 일관성이 높은 변환

표현을 생성한다. 최종 통합 특징은  합성곱 연산을
통해 채널 차원이 클래스 수(변화/비 변화)로 축소되고 양
선형보간법 (bi-linear Interpolation) 기반업샘플링을통해
입력 영상과 동일한 해상도로 복원되어 최종 변화 맵

이 출력된다.

5. 구현 세부사항

본 논문에서 제안한 DGCD-Net은 PyTorch[25] 프레임워
크를 기반으로 구현하였다. 백본 네트워크는 ImageNet 데

그림 4. 변화 맵 생성 네트워크 구조
Fig. 4. Network architecture for change map generation
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이터셋으로사전 학습된 VGG11[8]을사용하였으며최적화

알고리즘은 AdamW[26]를 적용하였다. 여기서백본네트워
크는 미세조정을 수행하였다. 초기 학습률은 0.0005로 설
정후 Cosine Annealing Warm Restarts[27] 방법을사용하였
으며 초기 주기 T_0은 {5,10,15}, 배수 인자 T_mult는
{2,4}로 설정하여 grid search를 수행하였다. 배치 크기

(batch size)는 8로설정하여총 50 epoch 동안학습을수행
하였으며 파라미터는 weight decay는 L2 정규화를 기반으
로 0.0025로수행되었다. 데이터증강 (Data Augmentation)
은 Random Horizontal Flip, Random Rotation, Random 
Exchange (두시점영상의위치교환) 연산을포함하여, 다
양한 기하학적 변형에 대한 일반화 성능을확보하였다. 모
델학습과정에서 Early Stopping 기법을적용하여검증세
트 기준 F1-Score가 최곳값을 기록한 모델을 최종 결과로
선정하였다. 출력 변화맵은 Sigmoid 함수를 거쳐 [0,1] 범
위의 확률값으로 변환된다. 손실 함수는 픽셀 단위의

Binary Cross-Entropy (BCE)로 정의되며 변화(1)와 비 변
화(0) 클래스 간의 예측 오차를 최소화하도록 모델을 학습
하였다.

(10)

여기서 와 는각각정답라벨과예측확률을의미한

다. 
SDF의 구조는 SGSR[28]의 CSA U-Net을 기반으로하되
입력및출력채널수만을조정하여구성하였다. 최적화알
고리즘은 ADAM[29]을 사용하였으며 초기 학습 룰은

0.0004로 설정하였으며 별도의 스케줄링 기법은 적용하지
않았다. 배치크기는 8로설정하여총 100 epoch 동안학습
을 수행하였다. 데이터 증강은 Random Crop, Random 
Horizontal Flip, 그리고 Random Rotate을 적용하였다. 학
습 완료된 SDF 모델은 고정한 상태로 DGCD-Net의 학습
및 추론에 활용된다. 모델 학습 과정에서 Early Stopping 
기법을 적용하여 검증 세트 기준 L1 Loss가 가장 낮은
모델을 최종 결과로 선정하였다. 입력 해상도는 모두 

으로 구성하였다.

Ⅳ. 실험 및 결과 분석

1. 실험 환경

제안하는 DGCD-Net은 Python 3.11.9와 PyTorch 2.8.0
을기반으로구현되었으며, 단일 NVIDIA RTX 4060 GPU 
환경에서 실험을 수행하였다. GPU 가속을 위해 CUDA 
12.1과 CuDNN 8.9.7 라이브러리를 사용하였다. 본연구에
서 사용된 실험 환경은 다음과 같다. 모델 학습과 평가는
AMD Ryzen 7 5800X 프로세서(8코어, 3.80GHz)를 기반
으로 하는 시스템에서 수행되었다. 메모리는 충분한 학습
성능을확보하기위해 32.0GB RAM을사용하였으며, 모든
실험은 동일한 설정에서 진행하였다. 

2. 데이터셋

WHU-CD 데이터셋은 건물 변화 탐지를 목적으로 구축
된 항공 영상 기반 벤치마크 데이터셋이다. 이데이터셋은
뉴질랜드 (New Zealand) Christchurch 지역의동일 지역을
서로 다른 시점(2012년과 2016년)에 촬영한 고해상도

(0.075m/pixel) 항공영상쌍으로구성되어있다. 2011년발
생한규모 6.3의지진으로인한도시재건과정을반영하고
있어 실제 건물의 신축 · 철거와 같은 구조적 변화를 포함
한다. 영상의공간범위는약 20.5km이며 2012년영상에는
12,796개, 2016년 영상에는 16,077개의 건물 객체가 포함
되어 있다. 두시점의영상은 30개의지상기준점 (Ground 
Control Point, GCP)을 이용하여 약 1.6 픽셀 수준의 정합
정확도로기하 보정되었으며, 각 시점의 건물 벡터지도와
라스터라벨이함께제공된다. 데이터셋의변화전(2012)과
변화후(2016) 영상은완전히중첩되어제공되므로변화탐
지 알고리즘의 학습 및정량적 평가를위한대표적인 표준

데이터셋으로 널리 활용되고 있다. 

3. 실험 결과

표 1의 정량적비교 결과는본 연구에서 제안한 DGCD- 
Net이 WHU-CD 데이터셋에서 기존 변화 탐지 모델들을
전반적으로상회하는 성능을달성했음을명확히보여준다. 
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기존사전정보기반모델인 CGNet과 ChangeCLIP은각각
RGB 영상에서 암시적 패턴을 통해 구조적 단서를 학습
하거나, Vision-Language 모델의 semantic prior를 활용함
으로써 일정 수준의 성능을 보였으나, 실제 건물의 높이
나 형태와 같은 물리적 구조 정보를 반영하지 못해 복잡

한 도시 장면의 세밀한 변화 구분에 한계가 있었다. 한
편, MambaBCD-Base와 CDMamba-P와같은 Mamba 기반
모델들은장거리의존성을효과적으로학습하여광역문맥

정보를 포착할 수 있으나, 입력 정보가 RGB appearance
에 한정되어 조명·그림자·배경 질감 변화로 인한 비의도
적 활성화를 완전히 억제하지 못하는 한계를 보였다. 또
한 주파수 도메인 기반의 FTA-Net은 RGB-only 모델 중
가장 높은 정확도를 기록했으나, 구조적 변화 단서 부재
로 인해 변화 경계의 안정적 분리에 제한이 존재했다. 이
에 비해 DGCD-Net은 RGB 영상과 SGPDM 기반의 깊이
정보를 명시적으로 결합하여 준물리적 구조 단서를 제공

함으로써 외란 요인에 강인한 변화 표현을 학습할 수 있

었으며, 그 결과 Precision 98.07%, Recall 94.46%, F1- 
score 96.23%를 기록하며 모든 비교 모델 대비 일관적으
로 향상됨을 보였다. 이러한 수치적 우위는 깊이 기반 구
조 정보와 멀티모달 융합 전략이 변화 탐지의 신뢰도 향

상에 결정적으로 기여했음을 실험적으로 입증하는 결과

라 할 수 있다.

4. Ablation Study

본 연구에서는 제안하는 DGCD-Net의 핵심 구성요소인

깊이 정보 활용 (Depth-Guided Explicit Prior)과 Adaptor 
모듈이변화탐지성능에 미치는영향을검증하기위해정

량적 비교 실험 (Ablation Study)을 수행하였다. 깊이 정보
는 외부 환경 변화에 대한 영향이 없고 영상 왜곡이 적어, 
건물 경계를 정밀하게 표현하는 구조적 단서로서 중요한

역할을 한다. 또한 Adaptor 모듈은 이러한 깊이 정보를 효
과적으로반영하여의미있는특징을선택적으로강조함으

로써모델의 표현력을 향상한다. 표 2는 WHU-CD 데이터
셋을 이용해깊이 정보및 Adaptor 모듈의 유무에따른 성
능차이를비교한결과이다. 실험결과, DGCD-Net은가장
높은 성능을 보인 기존 모델 SDCD-Net 대비 Precision

표 2. Depth를활용한기존변화탐지방법과 DGCD-Net의변화탐지정량적
비교 결과
Table 2. Quantitative comparison between DGCD-Net and depth- 
based change detection methods

표 3. DGCD-Net의 입력으로 사용된 깊이 마스크 유형별 성능 비교 결과
Table 3. Performance comparison according to different depth mask 
types used as DGCD-Net inputs

  

표 1. WHU-CD 데이터셋을 활용한 기존 변화 탐지 방법들과 DGCD-Net의 변화 탐지 정량적
Table 1. Quantitative comparison between DGCD-Net and existing change detection methods on the WHU-CD dataset
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3.14, recall 3.80%, F1-score 3.48% 향상을 달성하였다. 이
는건물중심영역에집중된 의미 있는 정보만을포함하는

SGPDM을 활용함으로써, 불필요한 배경 잡음을 억제하고
건물변화영역을정밀하게탐지할수있었기때문이다. 또
한, 표 3의 결과에서 확인할 수 있듯이 동일한 Adaptor 모
듈을 적용한 조건에서도 입력 깊이 데이터의 종류에 따라

성능 차이가 나타났다. DepthAnything, PDM, SGPDM을
각각 입력으로 사용한 SGPDM을 활용했을 때 가장 높은
성능을보였다. 이는 SGPDM이형태적일관성을유지하면
서 배경 잡음을 억제하여 모델이 변화 영역에 집중하도록

유도했음을 의미한다. 
네트워크구조설계관점에서 DGCD-Net의일반화성능
측정을 위한 정량적 비교 실험으로는 백본 네트워크와 깊

이추정모델을변경해가며실험을수행하였다. DGCD-Net
에 다양한 백본 네트워크를 적용하여 성능을 비교한 결과

는표 4와같다. 실험결과 DGCD-Net은다양한백본네트
워크에 대하여 전반적으로 높은 변화 탐지 성능을 보임을

알수있다. 다만 VGG 및 Resnet 대비 Transformer 모델은
약간낮은 성능을 보이는데 이는 Transformer 모델이 갖는
귀납편향 (Inductive Bias) 문제로인하여패치경계면에서

표 4. 백본 아키텍처 변경에 따른 모델 성능 평가
Table 4. Performance comparison according to backbone architecture 
changes

불연속성이 발생하기 때문으로 해석된다. 모델의 복잡도
관점에서 VGG11은 상대적으로 단순한 구조를 가짐에도
정확도 성능에는 큰 차이가 없어 실제 응용에 효율적으로

활용 가능할 것으로 판단된다. DGCD-Net에 다양한 깊이
추정모델과 SDF를적용하여성능을비교한결과는표 5와
같다. 실험에는 대표적인 깊이 추정 모델인 Depth Any- 
thing과 Midas[36]를 사용하였으며, 표의 ‘O’와 ‘X’는 각각
SDF 적용 유무를 나타낸다. 실험결과, Depth Anything에
SDF를 결합한 경우가 F1-score 96.23%를 기록하며 전체
비교군중가장우수한성능을달성하였다. 이와유사하게, 
Midas 모델기반실험에서도 SDF 적용시미적용 대비성
능이향상됨을 확인하였다. 이러한 결과는 SDF가 깊이 데
이터 내의 노이즈나 비관심 객체를 효과적으로 필터링 및

억제함으로써, 모델의 탐지 성능 최적화에 기여함을 보여
준다.
정성적 비교 결과는 그림 5와 같다. 영상에서 노란색은
정확히 예측한 영역 (True Positive), 파란색은 오검출

(False Positive), 빨간색은 미검출 (False Negative)을 의미
한다. 그림 5에서 확인할수 있듯이 ChangeCLIP을 포함한
기존 모델들은 텍스처 변화나 조명 차이에 반응하여 실제

변화가 없는 도로·지면·건물에인접한 적재물 영역에서불
필요한탐지가 발생하거나, 건물 경계 부근에서 변화가 부
분적으로누락됨을보였다. 특히 ChangeCLIP의경우텍스
트-비전기반구조로인해건물형태변화보다는지역적시
각 변화에 더 크게 반응하며, 실제 변화 영역을 일관되게
포착하지 못하는 사례가 나타난다. 반면 제안하는

DGCD-Net은 SGPDM을통해정제된깊이기반구조단서
를 활용하여 이러한 오검출·미검출 문제를 효과적으로 억
제하였다. DGCD-Net은 건물의 외곽선과 증축·철거와 같

표 5. SDF 적용 및 깊이 데이터 활용에 따른 모델 성능 평가
Table 5. Quantitative comparison of performance with and without SDF

[14]

[14]

[36]

[36]

[8]

[8]

[34]

[35]
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은 구조적 변화를 정확하게 탐지하며, 비변화영역의 불필
요한 탐지를 최소화한다. 그결과 DGCD-Net이생성한 변
화 맵은 정답 (GT)과 가장 유사한 형태를 보였으며, 이는
깊이 정보의 명시적 사전 정보와 Adaptor 모듈의 결합이
변화탐지정확도를실질적으로향상시킴을시각적으로보

여준다.

5. 실험 결과 분석

표 1은 WHU-CD 데이터셋을 기준으로, 깊이 정보를 사
용하지않는기존변화탐지모델들과제안하는 DGCD-Net
을 세 가지 주요 평가 지표로 비교한 결과이다. 이를 통해

기존 모델 중 가장 높은 성능을 보인 FTA-Net은 F1-score
가 약 95.21% 수준에 머무르며 RGB 기반 단일 모달리티
접근의성능적한계를확인할수있다. 반면, DGCD-Net은
F1-score 96.23%를 기록하여 모든 비교 모델을 상회하는
성능을보여주었으며, 이는 깊이 정보를 사전 정보로 도입
한설계가변화탐지성능향상에유효함을나타낸다. 또한, 
깊이 정보의 품질이 성능에 미치는 영향을 검증하기 위해

표 3에서수행한깊이마스크유형별비교결과를통해, 영
상에 잡음이 많이 포함되어 있는 DepthAnyting 그대로 사
용하여 실험한결과 F1-score는 92.09%, 정제되지않은 깊
이정보인 PDM을사용한실험결과 F1-score는 96.05% 수
준에 머물렀다. 반면, SDF를 적용하여 생성한 SGPDM을

그림 5. 기존 변화탐지의방법과 DGCD-Net의정성적 비교결과 (노란색 영역: GT와 예측이일치한 부분, 파란색 영역: False Positive, 빨강색
영역: False Negative)
Fig. 5. Qualitative comparison between existing change detection methods and DGCD-Net (Yellow: True Positive, Blue: False Positive, 
Red: False Negative)

[11] [31] [13] [15]
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입력으로활용한경우 F1-score가 96.23%로크게향상됨을
확인할수있었다. 이는깊이정보의의미기반정제가변화
탐지에 필요한 구조적 단서를 안정적으로 확보하는 데 중

요한역할을함을보여준다. 더나아가동일한깊이입력을
사용하는조건에서도 Adaptor 모듈의적용여부에따라성
능차이가발생하는것을표 2를통해확인하였다. Adaptor
를 적용한설정에서 정확도, 재현율, F1-score가모두 상승
하였으며, 이를 통해 깊이 기반 구조 단서가 RGB 특징과
정렬된 표현 공간에서결합할 때두모달리티의상호보완

적 정보가 더 효과적으로 통합됨을 알 수 있다. 즉, 깊이
정보를 단순히 입력으로 병합하는 것보다, SGPDM 기반
정제와 Adaptor 기반 표현 정렬이 함께 이루어질 때 변화
여부에 대한 특징 반응이 더욱 안정적으로 나타난다는 사

실을 실험적으로 입증한다. 이와 같은정량적분석 결과는
그림 5의 정성적 비교와도 일관된다. ChangeCLIP을 포함
한기존모델들은 텍스처변화나조명차이에 반응하여실

제변화가없는도로·지면·건물인접적재물영역에서불필
요한 탐지가 발생하거나, 건물경계부근에서변화가 부분
적으로 누락되는 경향을 보인다. 반면 DGCD-Net은
SGPDM으로정제된깊이기반구조단서를활용하여비변
화 영역의 과도한 활성화를 억제하고 실제 구조적 변화를

명확하게 포착하는 결과를 보였다. 이를 통해 DGCD-Net
이생성한변화맵이정답과가장유사한형태를나타내며, 
깊이 정보와 Adaptor 모듈의 결합이 변화 탐지 정확도를
시각적으로도 향상함을 확인했다.

Ⅴ. 결 론

본 논문에서는 원격탐사 영상에서 건물 중심의 변화를

정밀하게탐지하기 위해 DGCD-Net을제안하였다. 제안된
모델은 SGPDM과 Adaptor 모듈을 결합하여 복잡한 배경
이나 다양한 장면에서도 안정적이고 정밀한 변화 탐지 성

능을 달성하였다. WHU-CD 데이터셋에서 평가한 결과, 
DGCD-Net은 Precision 98.07%, Recall 94.46%, F1-Score 
96.23%로 기존 방법 대비 우수한 성능을 보였으며, 특히
객체의 경계 변화 영역을 더욱 정확히 추출함으로써 깊이

정보의 유효성을 입증하였다. 이는 깊이정보가건물의구

조적특성과존재유무를보존하여, RGB 영상만으로는구
분하기어려운변화를인지할수있게한결과로해석된다. 

참 고 문 헌 (References)

[1] J. Chen, D. Hou, C. He, Y. Liu, Y. Guo and B. Yang, “Change 
Detection With Cross-Domain Remote Sensing Images: A Systematic 
Review,” in IEEE Journal of Selected Topics in Applied Earth 
Observations and Remote Sensing, vol. 17, pp. 11563-11582, 2024.
doi: https://doi.org/10.1109/JSTARS.2024.3416183

[2] Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. “U-net: 
Convolutional networks for biomedical image segmentation.” 
International Conference on Medical image computing and 
computer-assisted intervention. Cham: Springer international 
publishing, 2015.

[3] He, Kaiming & Zhang, Xiangyu & Ren, Shaoqing & Sun, Jian. (2016). 
Deep Residual Learning for Image Recognition. 770-778.
doi: https://doi.org/10.1109/CVPR.2016.90

[4] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. 
Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. 
Uszkoreit, and N. Houlsby, “An Image is Worth 16x16 Words: 
Transformers for Image Recognition at Scale,” in Proc. Int. Conf. 
Learn. Representations (ICLR), 2021. Available: https://openreview. 
net/forum?id=YicbFdNTTy

[5] Wiratama, Wahyu & Lee, Jongseok & Park, Sang-Eun & Sim, 
Donggyu. (2018). Dual-Dense Convolution Network for Change 
Detection of High-Resolution Panchromatic Imagery. Applied 
Sciences. 8. 1785.
doi: https://doi.org/10.3390/app8101785

[6] Alidoost, Fatemeh, and Hossein Arefi. “A CNN-based approach for 
automatic building detection and recognition of roof types using a 
single aerial image.” PFG–Journal of Photogrammetry, Remote 
Sensing and Geoinformation Science 86.5 (2018): 235-248.

[7] Lee, Jongseok & Wiratama, Wahyu & Lee, Wooju & Marzuki, Ismail 
& Sim, Donggyu. (2023). Bilateral Attention U-Net with Dissimilarity 
Attention Gate for Change Detection on Remote Sensing Imageries. 
Applied Sciences. 13. 2485.
doi: https://doi.org/10.3390/app13042485

[8] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks 
for Large-Scale Image Recognition,” in Proc. Int. Conf. Learn. 
Representations (ICLR), 2015. Available: http://arxiv.org/abs/1409. 
1556

[9] W. G. C. Bandara and V. M. Patel, “A Transformer-Based Siamese 
Network for Change Detection,” IGARSS 2022 - 2022 IEEE 
International Geoscience and Remote Sensing Symposium, Kuala 
Lumpur, Malaysia, 2022, pp. 207-210.
doi: https://doi.org/10.1109/IGARSS46834.2022.9883686

[10] H. Chen, Z. Qi and Z. Shi, “Remote Sensing Image Change Detection 
With Transformers,” in IEEE Transactions on Geoscience and Remote 
Sensing, vol. 60, pp. 1-14, 2022, Art no. 5607514.



136 방송공학회논문지 제31권 제1호, 2026년 1월 (JBE Vol.31, No.1, January 2026)

doi: https://doi.org/10.1109/TGRS.2021.3095166
[11] C. Han, C. Wu, H. Guo, M. Hu, J. Li and H. Chen, “Change Guiding 

Network: Incorporating Change Prior to Guide Change Detection in 
Remote Sensing Imagery,” in IEEE Journal of Selected Topics in 
Applied Earth Observations and Remote Sensing, vol. 16, pp. 
8395-8407, 2023.
doi: https://doi.org/10.1109/JSTARS.2023.3310208

[12] H. Chen, J. Song, C. Han, J. Xia and N. Yokoya, “ChangeMamba: 
Remote Sensing Change Detection With Spatiotemporal State Space 
Model,” in IEEE Transactions on Geoscience and Remote Sensing, 
vol. 62, pp. 1-20, 2024, Art no. 4409720.
doi: https://doi.org/10.1109/TGRS.2024.3417253

[13] Hye-jeong Choi, Jangsoo Park, Seoung-Jun Oh, & Donggyu Sim 
(2024-11-20). Change Detection Method using Depth Information in 
Remotely Sensed Images. Proceedings of the Korean Society of 
Broadcast Engineers Conference,  Seoul.

[14] L. Yang, B. Kang, Z. Huang, X. Xu, J. Feng, and H. Zhao, “Depth 
Anything: Unleashing the Power of Large-Scale Unlabeled Data,” in 
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), 2024.

[15] Hye-jeong Choi, Jangsoo Park, Seoung-Jun Oh, & Donggyu Sim 
(2025-06-22). Pseudo Depth Information Prediction Network for 
Improving Building Change Detection. Proceedings of the Korean 
Society of Broadcast Engineers Conference,  Jeju.

[16] S. Ji, S. Wei, and M. Lu, “Fully convolutional networks for multisource 
building extraction from an open aerial and satellite imagery data set.” 
IEEE Transactions on Geoscience and Remote Sensing, Vol.57, No.1, 
pp.574-586, 2018.

[17] Lee, Wooju, Donggyu Sim, and Seoung-Jun Oh. 2021. “A CNN-Based 
High-Accuracy Registration for Remote Sensing Images” Remote 
Sensing 13, no. 8: 1482.
doi: https://doi.org/10.3390/rs13081482

[18] Wang, Lukang, Min Zhang, Xu Gao, and Wenzhong Shi. 2024. 
“Advances and Challenges in Deep Learning-Based Change Detection 
for Remote Sensing Images: A Review through Various Learning 
Paradigms” Remote Sensing 16, no. 5: 804.
doi: https://doi.org/10.3390/rs16050804

[19] Vinholi, J.G.; Palm, B.G.; Silva, D.; Machado, R.B.; Pettersson, M.I. 
Change Detection Based on Convolutional Neural Networks Using 
Stacks of Wavelength-Resolution Synthetic Aperture Radar Images. 
IEEE Trans. Geosci. Remote Sens. 2022, 60, 5236414.

[20] CHOI, Hansol; LEE, Jongseok; SIM, Donggyu. Dense-Depth Map 
Estimation with LiDAR Depth Map and Optical Images based on 
Self-Organizing Map. Journal of Broadcast Engineering, 2021, 26.3: 
283-295.

[21] W. Yuan, X. Gu, Z. Dai, S. Zhu, and P. Tan, “Neural window 
fully-connected CRFs for monocular depth estimation,” in Proc. 
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2022, 
pp. 3916–3925.

[22] Guo H, Zhu H, Peng S, Lin H, Yan Y, Xie T, Wang W, Zhou X, Bao H., 
“Multi-view Reconstruction via SfM-guided Monocular Depth 
Estimation,” 2025 IEEE/CVF Conference on Computer Vision and 
Pattern Recognition (CVPR), Nashville, TN, USA, 2025, pp. 

5272-5282.
doi: https://doi.org/10.1109/CVPR52734.2025.00497

[23] Lopes, Alexandre, Roberto Souza, and Helio Pedrini. “A survey on 
RGB-D datasets.” Computer Vision and Image Understanding 222 
(2022): 103489.

[24] Uchitha Rajapaksha, Ferdous Sohel, Hamid Laga, Dean Diepeveen, 
and Mohammed Bennamoun. 2024. Deep Learning-based Depth 
Estimation Methods from Monocular Image and Videos: A Com- 
prehensive Survey. ACM Comput. Surv. 56, 12, Article 315 (De- 
cember 2024), 51 pages. 
doi: https://doi.org/10.1145/3677327

[25] Imambi, Sagar, Kolla Bhanu Prakash, and G. R. Kanagachi- 
dambaresan. “PyTorch.” Programming with TensorFlow: solution for 
edge computing applications. Cham: Springer International Pub- 
lishing, 2021. 87-104.

[26] I. Loshchilov and F. Hutter, “Decoupled Weight Decay Re- 
gularization,” in Proc. Int. Conf. Learn. Representations (ICLR), 2019. 
Available: https://openreview.net/forum?id=Bkg6RiCqY7

[27] I. Loshchilov and F. Hutter, “SGDR: Stochastic Gradient Descent with 
Warm Restarts,” in Proc. Int. Conf. Learn. Representations (ICLR), 
2017. Available: https://openreview.net/forum?id=Skq89Scxx

[28] D. Kim and M. Kim, “SGSR: A Saliency-Guided Image 
Super-Resolution Network,” 2023 IEEE International Conference on 
Image Processing (ICIP), Kuala Lumpur, Malaysia, 2023, pp. 980-984. 
doi: 10.1109/ICIP49359.2023.10222146

[29] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic 
Optimization,” in Proc. Int. Conf. Learn. Representations (ICLR), 
2015. Available: http://arxiv.org/abs/1412.6980

[30] S. Fang, K. Li, J. Shao, and Z. Li, “SNUNet-CD: A densely connected 
Siamese network for change detection of VHR images,” IEEE Geosci. 
Remote Sens. Lett., vol. 19, pp. 1–5, 2022.
doi: https://doi.org/10.1109/TGRS.2024.3367948

[31] Dong, Sijun & Wang, Libo & Du, Bo & Meng, Xiaoliang. (2024). 
ChangeCLIP: Remote sensing change detection with multimodal 
vision-language representation learning. ISPRS Journal of Photo- 
grammetry and Remote Sensing. 208. 53-69.
doi: https://doi.org/ 10.1016/j.isprsjprs.2024.01.004

[32] Zhu, Taojun & Zhao, Zikai & Xia, Min & Huang, Junqing & Weng, 
Liguo & Hu, Kai & Lin, Haifeng & Zhao, Wenyu. (2025). FTA-Net: 
Frequency-Temporal-Aware Network for Remote Sensing Change 
Detection. IEEE Journal of Selected Topics in Applied Earth 
Observations and Remote Sensing. PP. 1-14.
doi: https://doi.org/10.1109/JSTARS.2025.3525595

[33] H. Zhang, K. Chen, C. Liu, H. Chen, Z. Zou and Z. Shi, “CDMamba: 
Incorporating Local Clues Into Mamba for Remote Sensing Image 
Binary Change Detection,” in IEEE Transactions on Geoscience and 
Remote Sensing, vol. 63, pp. 1-16, 2025, Art no. 4405016.
doi: https://doi.org/10.1109/TGRS.2025.3545012

[34] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep 
residual learning for image recognition.” In Proceedings of the IEEE 
conference on computer vision and pattern recognition, pp. 770-778. 
2016.

http://arxiv.org/abs/1412.6980


최혜정 외 3인: 명시적 깊이 사전 정보를 활용한 건물 변화 탐지 137
(Hye-jeong Choi et al.: Building Change Detection with Explicit Depth Prior Knowledge)

[35] Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion 
Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 
“Attention is all you need.” Advances in neural information processing 
systems 30 (2017).

[36] Ranftl, René, Katrin Lasinger, David Hafner, Konrad Schindler, and 
Vladlen Koltun. “Towards robust monocular depth estimation: Mixing 
datasets for zero-shot cross-dataset transfer.” IEEE transactions on 
pattern analysis and machine intelligence 44, no. 3 (2020): 1623-1637.

저 자 소 개

최 혜 정

- 2024년 2월 : 고려대학교 데이터사이언스학부 학사
- 2024년 9월 ~ 현재 : 광운대학교 컴퓨터공학과 석사과정
- ORCID : https://orcid.org/0009-0008-6901-8299
- 주관심분야 : 영상신호처리, 영상압축, 컴퓨터비전

박 장 수

- 2016년 8월 : 광운대학교 컴퓨터공학과 학사
- 2019년 2월 : 광운대학교 컴퓨터공학과 석사
- 2019년 8월 ~ 2023년 1월 : 아이브스 주식회사 선임연구원
- 2023년 3월 ~ 현재 : 광운대학교 컴퓨터공학과 박사과정
- ORCID : https://orcid.org/0009-0005-9312-6781
- 주관심분야 : 영상신호처리, 고성능컴퓨팅

오 승 준

- 1980년 2월 : 서울대학교 전자공학과 학사
- 1980년 2월 : 서울대학교 전자공학과 학사
- 1988년 5월 : 미국 Syracuse University 전기/컴퓨터공학과 박사
- 1982년 3월 ~ 1992년 8월 : 한국전자통신연구원 멀티미디어연구실 실장
- 1986년 7월 ~ 1986년 8월 : NSF Supercomputer Center 초청 학생연구원
- 1987년 5월 ~ 1988년 5월 : Northeast Parallel Architecture Center 학생연구원
- 1992년 3월 ~ 1992년 8월 : 충남대학교 컴퓨터공학부 겸임교수
- 2002년 3월 ~ 2017년 12월 : SC29-Korea 전문위원회 대표위원
- 2001년 8월 ~ 2022년 3월 : MPEG 뉴미디어 포럼 부의장
- 2023년 3월 ~ 현재 : 광운대학교 산학협력단 연구교수
- ORCID : https://orcid.org/0000-0002-5036-3761
- 주관심분야 : 비디오 데이터 압축, 머신러닝/딥러닝 기반 컴퓨터비젼

심 동 규

- 1993년 2월 : 서강대학교 전자공학과 공학학사
- 1995년 2월 : 서강대학교 전자공학과 공학석사
- 1999년 2월 : 서강대학교 전자공학과 공학박사
- 1999년 3월 ~ 2000년 8월 : 현대전자 선임연구원
- 2000년 9월 ~ 2002년 3월 : 바로비젼 선임연구원
- 2002년 4월 ~ 2005년 2월 : University of Washington Senior research engineer
- 2005년 3월 ~ 현재 : 광운대학교 컴퓨터공학과 교수
- ORCID : https://orcid.org/0000-0002-2794-9932
- 주관심분야 : 영상신호처리, 영상압축, 컴퓨터비전


	10최혜정
	책갈피
	_Hlk212049359
	_Hlk212049368
	_Hlk214025916



