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Abstract

This paper proposes DGCD-Net (Depth-Guided Change Detection Network, DGCD-Net) for remote-sensing change detection
robust to noise and sensor distortions. Optical images and corresponding depth are encoded and fused via an adaptor module to
form a discriminative representation and generate a change map. A Semantic Distortion Filter (SDF) corrects noisy depth-estimation
artifacts to better reflect scene geometry. On WHU-CD, DGCD-Net achieves 96.23% F1, about 1% higher than FTA-Net.
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Table 1. Quantitative comparison between DGCD-Net and existing change detection methods on the WHU-CD dataset

Model Backbone Precision Recall F1-Score
SNUNet-CD B NestedUNet 83.52 82.46 53.99
CGNet!"! VGG16 94.47 90.79 92.59
ChangeCLIP®Y ResNetb0 95.63 94.02 94.82
MambaBCD-Base ™ Transformer 95.90 92.29 94.06
FTA-Net? MobileNetV2 96.02 94.43 95.21
CDMamba-PP CDMamba 95.58 92.01 93.76
DGCD-Net VGG11 98.07 94.46 96.23
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Table 2. Quantitative comparison between DGCD-Net and depth-
based change detection methods

Model Backbone Precision Recall F1-Score
SDCD-Net!™! VGG11 94.93 90.66 92.75
PDE-Net!!s) VGG11 93.03 90.14 91.56

DGCD-Net VGG11 98.07 94.46 96.23

E 3. DGCD-Net9| Q20= AIZE
Table 3. Performance comparison according to different depth mask
types used as DGCD-Net inputs

200] 0j23 R A5 BT 23}

Depth Input Precision(%)  Recall(%)  Fl-score(%)
DepthAnything 4 90.77 93.44 92.09
PDM! 97.73 94.46 96.05
SGPDM 98.07 94.46 96.23
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Table 4. Performance comparison according to backbone architecture
changes

Backbone Precision(%) Recall(%)F1-score(%)
VGG11® 98.07 94.46 96.23
VGGl6® 98.11 93.98 96
ResNet18%4 97.99 94.57 96.25
Transformer B 93.37 97.9 95.58
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Table 5. Quantitative comparison of performance with and without SDF

Depth Estimation Model

SDF  Precision(%) Recall(%) F1-score(%)
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95.5 89.29 92.29
98.07 94.46 96.23
94.26 85.99 89.93
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