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요 약

기존 퍼팅 연습기는 압전 센서를 활용하지만, 센서 특성에 따른 인위적인 보정이 필요하다는 한계가 있다. 이를 해결하기 위해 본
연구는 디지털 카메라 및 컴퓨터 비전 기술을 활용한 퍼팅 거리 예측 방법을 소개한다. 제안 방법에서는 신호처리 및 딥러닝 기술을
비교하여 골프공 탐지 및 추적 모듈을 설계하고 관측된 속도를 퍼팅 거리로 환산하는 모듈을 추가하였다. 다양한 탐지 및 추적 방법을
비교한 결과, 탐지 모듈에서는 미세 조정한 YOLOv8 Large 신경망이 mAP@50 98.9%로 가장 높은 성능을 보였으며, 비교적 복잡한
구조임에도 평균 30.32 FPS의 실시간 처리 성능을 달성하여 탐지 정확도와 처리 속도 측면 모두에서 높은 효율을 보였다. 퍼팅 거리
추정 모듈은 베이지안 선형 회귀 모델이 비교적 우수한 성능을 보였다. 제안 방법은 기존 센서 기반의 한계를 극복하는 컴퓨터 비전
기술 기반 퍼팅 거리 예측 방법의 실효성을 입증한다.

Abstract

A conventional putting training device utilizes piezoelectric sensors, but they require artificial calibration due to sensor 
characteristics, posing a limitation. To address this issue, this study introduces a putting distance prediction method using a digital 
camera and computer vision technology. The proposed method compares signal processing and deep learning techniques to design a 
golf ball detection and tracking module, along with an additional module that converts the observed velocity into putting distance. 
Comparative analysis of various detection and tracking methods showed that a fine-tuned YOLOv8 Large neural network achieved 
the highest performance with an mAP@50 of 98.9% in the detection module and demonstrated real-time capability by achieving an 
average of 30.32 FPS despite its relatively complex architecture, indicating strong efficiency in both detection accuracy and 
processing speed. The Bayesian linear regression model demonstrated relatively superior performance in the putting distance 
estimation module. The proposed method validates the feasibility of computer vision-based putting distance prediction, overcoming 
the limitations of conventional sensor-based approaches.

Keyword : Putting Distance Prediction, Golf Ball Tracking, Golf Ball Detection, Sports Technology, Sensor-Free 
Measurement
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Ⅰ. 서 론

최근 컴퓨터 비전과 딥러닝 기술의 발전으로 다양한 분

야에서 정밀한 분석과 자동화가 가능해지고 있으며, 스포
츠훈련 시스템에서도 효과적인도구로활용되고있다[1][2]. 
특히, 객체탐지및추적기술을활용하면운동수행과정을
보다정밀하게분석할수있어스포츠훈련과 성과 평가의

정확도를높일수있다. 본연구에서는이러한기술을활용
하여 골프 퍼팅 훈련을 위한 딥러닝 기반 퍼팅 거리 예측

방법을 제안한다.
퍼팅 연습기는 장소 제약 없이 집, 실내 연습장, 사무실
등에서 골프 연습을 수행할 수 있게 도와주는 휴대용 및

디지털기반의연습도구이다. 내장된압전센서를통해골
프공과 제품 사이에 발생하는 충격량을 감지하여 이를 거

리로 환산함으로써, 사용자에게 정교한 퍼팅 연습 환경을
제공한다. 그러나, 제품에내장된압전센서는아날로그측
정 방식을 사용하기 때문에 센서마다 전자적 특성이 상이

하며, 제품 개발 시 각 센서의 특성을 고려한 보정 작업이
필요하다. 또한, 아날로그 신호의 특성상 전자기적 간섭과
온도 변화로 인해 잡음이 추가될 수 있어, 이로 인해 측정
정확도가 저하될 가능성이 있다. 이러한문제는디지털신
호로 변환하는 과정에서 정보 손실을 초래하여 퍼팅 연습

기의 신뢰성을 저하시킬 수 있다.
퍼팅거리측정을 위한다양한하드웨어기반기술도연

구되어왔다. 예를들어, 레이저도트포인터와디지털각도
센서를 활용하여 삼각함수를 기반으로 퍼팅 거리 및 라인

경사도를 계산하는 방식이 제안된 바 있다[3]. 해당 장치는
골프공과 목표 지점 간의 거리뿐만 아니라 경사 정보(예: 
오르막/내리막, 좌우 기울기)를 종합적으로 제공하여 퍼팅
정확도를향상시킬수있다. 그러나이와같은장치는별도
의장비장착과정교한초기설정이필요하며, 센서위치나

사용자 동작에 따른 간섭 가능성 등으로 인해 실내 연습

환경에서는 적용이 어렵고, 일반 사용자에게는 실용성이
떨어질 수 있다.
영상기반골프공탐지에대한기존연구도 일부존재하

지만, 대부분은 야외 필드 환경에서 스윙으로 타격된 골프
공의 속도 및 방향[4], 혹은 궤적을 추적[5][6]하는 데 중점을

두고 있다. 이러한 연구들은 고속으로 이동하는 골프공을
분석하는데 초점이 맞춰져 있으며, 실내환경에서의 퍼팅
거리예측을목적으로한연구는매우드물다. 특히 YOLO
와 같은 딥러닝기반객체탐지신경망을 활용하여골프공

을 실시간으로 인식하고, 관측된 속도를 바탕으로 퍼팅 거
리까지자동으로예측하는연구는현재까지의문헌에서거

의 확인되지 않는다.
발전된 디지털 카메라의 성능과 딥러닝 기반 객체 탐지

기술을 이용하는 영상 기반 접근법은 골프공의 움직임을

정밀하게 분석할 수 있으며, 다양한 환경에서도 안정적인
탐지가가능하다는점에서효과적인대안이될수있다. 이
에 본논문에서는디지털 카메라를활용하여골프퍼팅장

면을촬영하고, 객체탐지및추적을위해신호처리기반과
딥러닝 기반 기술을 비교 분석하여 골프공을 정확하게 탐

지및추적하는알고리즘을설계하였다. 또한, 관측된속도
를 바탕으로 퍼팅 거리를 예측하는 회귀 모델을 결합하였

다. 제안방법은센서기반측정방식의인위적인보정작업
한계를극복하고, 영상기반의퍼팅거리예측의실효성및
가능성을 보인다.
본논문의구성은다음과같다. 제2장에서는본연구에서
제안하는 퍼팅 거리 예측 프레임워크의 전체적인 개요를

제시하고, 이를 구성하는 두 가지 핵심 모듈인 객체 탐지
모듈과거리추정모듈의세부구조를설명한다. 특히객체
탐지 모듈에서는 골프공을 정확히 탐지하고 위치 정보를

추출하는과정을, 거리 추정 모듈에서는 탐지된 정보를 바
탕으로실제퍼팅거리를 예측하는회귀기반기법을 다룬

다. 제3장에서는제안된방법의성능을검증하기위한다양
한 실험을 수행하고 그 결과를 분석한다. 여기에는딥러닝
기반탐지신경망과 전통적추적알고리즘의조합성능평

가, YOLOv8을활용한탐지정확도실험, 실시간성평가를
위한 FPS 비교실험, 회귀모델별 오차 비교실험 등이 포
함된다. 마지막으로제4장에서는본 연구의결론을제시하
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고, 향후 연구 방향에 대해 논의한다.

Ⅱ. 제안 방법

1. 개요

본 논문에서 제안하는 방법은 골프공을 탐지하기 위한

객체 탐지 모듈(Object Detection Module)과 탐지 결과를
기반으로 거리를 추정하는 거리 추정 모듈(Distance Esti- 
mation Module)로 구성되며, 전체 알고리즘 구조는 [그림
1]에 묘사된다. 
먼저, 객체탐지모듈은골프퍼팅장면이포함된동영상
이입력되었을때, 객체탐지및추적알고리즘을적용하여
골프공을 탐지하고, 탐지된 골프공의 Bounding Box 좌표
와프레임번호를추출하여거리추정모듈로전달한다. 거
리추정모듈은객체탐지모듈로부터전달받은프레임번

호를 통해 골프공의속도를 계산하며, 회귀(Regression) 모
델[7]을이용해퍼팅거리를추정해출력한다. 각모듈에대
한 세부적인 설명은 2.2절과 2.3절에서 다룬다.

2. 객체 탐지 모듈

객체탐지모듈은입력된동영상에서골프공을탐지하는

골프공탐지기(Golf Ball Detector)와골프공의속도계산에
필요한골프공의위치정보와프레임정보를추출하는골프

공 추출기(Golf Ball Extractor)로 구성되며, 추출된 정보는
이후거리추정모듈로전달한다. 본연구에서는골프공탐지
기(Golf Ball Detector)를설계하기위해, 다음세가지접근
방법을분석하고, 실험을통해가장우수한방법을선택한다.

2.1. 골프공 탐지기
첫 번째방법은딥러닝 기반탐지신경망을 사용하여골

프공을탐지한 후, 탐지된 골프공의 정보를 신호처리 기반
추적알고리즘에전달하여 지속적으로 추적하는방법이다. 
탐지를 위한 신경망으로는 속도와 정확성을 균형 있게 제

공하며, 다양한 크기의 객체를 효과적으로 탐지할 수 있는
YOLOv8의 Large 신경망[8]을 사용하며, 신호처리 기반 추
적 알고리즘으로 CSRT(Channel and Spatial Reliability 
Tracker), Median Flow, MOSSE(Minimum Output Sum of 
Squared Error)를 비교한다.

YOLOv8은이전 YOLO 신경망[9-14] 대비경량화된구조
와향상된 Feature Aggregation 방식을통해속도와정확성
을 균형 있게 제공하며, 다양한크기의객체를효과적으로
탐지할 수 있는 장점을 가진다. 그 중 Large 신경망은 더
많은 파라미터와 복잡한 계층 구조를 통해 고난이도의 탐

지 작업에서 높은 정확도를 제공하며, 특히 골프공과 같이
작고 빠르게 움직이는 물체를 높은 정확도로 탐지하기 때

그림 1. 제안 방법의 블록도
Fig. 1. Block Diagram of the Proposed Method
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문에 YOLOv8의 Large 신경망을 사용한다.
CSRT[15]는채널과공간신뢰도를활용해객체의가림현

상이나빠른움직임에도효과적으로동작한다는특징을가

지는 추적 알고리즘이다. Median Flow[16]는 Optical Flow
를 기반으로 객체의 특징점을 추적하며, 양방향추적 결과
를비교해신뢰도를평가한뒤이상치를제거하고, 남은특
징점들의 중앙값으로 객체의 위치를 계산하는 알고리즘으

로, 변화하는 조명조건과급격한 움직임에 대해 안정적이
라는 특징을 갖는다. MOSSE[17]는 실시간 객체 추적을 목

표로한고속필터기반학습방법으로, 다양한환경변화에
도 강인하다는 특징이 있다.
첫 번째 방법의 수행 단계는 다음과 같다. 먼저, 딥러닝
기반탐지신경망인 YOLOv8 Large 신경망을활용하여입
력동영상의첫번째프레임에서골프공을탐지한다. 탐지된
결과는 골프공 추출기에 의해 Bounding Box 좌표 형태의
골프공위치정보와함께프레임정보가추출되어거리추정

모듈로 전달된다. 이후, 탐지된 골프공의 정보는 신호처리
기반추적알고리즘을통해지속적으로추적한다. 딥러닝추
적방법을활용하지않고신호처리기반추적방법을사용하

는 이유는 딥러닝의 과도한 계산 비용을 줄이기 위함이다. 
추적 성공 여부는 Flag값을 통해 모니터링된다. 이 Flag는
추적기의초기화상태를나타내며, 추적기가성공적으로골
프공을추적하고있는경우 True로설정된다. 반면, 추적이
실패하거나 추적 대상을 잃어버린 경우 False로 설정된다. 
Flag값이 False가되면, YOLOv8 Large 신경망이다시호출
되어 골프공을 재탐지함으로써 추적 기능을 보완한다.
두 번째 방법과 세 번째 방법은 딥러닝 탐지 신경망을

활용하여 매 프레임의 골프공을 탐지하는 방법으로, 별도
의추적알고리즘을사용하지않는다. 두방법의차이점은, 
두번째방법은딥러닝 탐지 신경망의사전학습된 신경망

을그대로사용한반면, 세번째방법은사전학습된신경망
을미세조정하여활용한점이다. 두방법모두앞서소개된
첫 번째 방법과 동일하게 YOLOv8을 사용한다.
구체적으로, 두 번째방법에서는 YOLOv8 Large 신경망
의 사전 학습된 가중치를 사용하며, 이 가중치는 COCO 
(Common Objects in Context) 데이터셋[18]으로 학습된 것

이다. COCO 데이터셋에는 80개의 객체 클래스가 포함되
어있으며, 그중 ‘sports ball’ 클래스를이용하여골프공을

탐지한다.
세번째방법은두번째방법과달리, YOLOv8 Large 신
경망을미세 조정하여 사용한다. 사전 학습된 신경망은 골
프공 탐지가 가능하지만, 골프공에 특화되어 있지 않아 탐
지성능이부족할수있다. 이를개선하기위해기존 COCO 
데이터셋의 ‘sports ball’ 클래스로 학습된 YOLOv8 Large 
가중치를기반으로 Roboflow에서제공하는골프공데이터
셋[19]을활용하여골프공탐지에적합하도록신경망을미세

조정한다.
두 방법모두딥러닝기반탐지신경망만을 사용하여매

프레임마다 골프공을 탐지하며, 골프공의 위치 정보와 프
레임 정보는 골프공 추출기를 통해 추출된 후 거리 추정

모듈로 전달된다.

2.2 골프공 추출기
골프공추출기는탐지된골프공객체정보에서골프공의

위치 데이터를 추출하고, 골프공 속도 측정을 위한프레임
번호를선정하여거리 추정 모듈로 전달한다. 골프공의 위
치 데이터는 탐지된 객체의 Bounding Box 형식으로 제공
하며, 이는프레임내골프공을감싸는사각형의중심 x 좌
표, 중심 y 좌표, 너비(width), 높이(height)로 구성된다. 
골프공의프레임정보는골프공이움직이기시작한시점

인 시작 프레임 번호(Start Frame Number)와 퍼팅 연습기
에 도달하기 직전에 대한 종료 프레임 번호(End Frame 
Number)로 이루어져 있다. 시작 프레임 번호는 골프공의
y 좌표가급격히변화하는시점을골프공이움직이기시작
한순간으로간주하여결정한다. [그림 2]는골프공의속도
를측정할구간의프레임번호와골프공의 y 좌표를보여준
다. 테스트영상의해상도는 1920x1080이며, [그림 2]의테
스트영상에서시작프레임은 79번째프레임으로검출되었
고, 골프공의 y 좌표는 272였다. 94번째 프레임에서 종료
프레임으로 결정되었으며 y 좌표는 857이었다. 종료 프레
임번호는골프공의 y 좌표가미리설정된임계값을초과하
는 시점으로 정의된다. 이 임계값은 퍼팅연습기와디지털
카메라로 자체 촬영한 총 51개의 퍼팅 동영상을 이용하여
설정하였으며, 각 동영상에서 골프공의 시작 시점과 종료
시점을개별적으로확인한후, 종료시점에서의 y 좌표값을
추출하여 그 평균을 임계값으로 사용한다.
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3. 거리 추정 모듈

거리 추정 모듈은 객체 탐지 모듈에서 전달받은 정보를

기반으로 골프공의 속도를 계산하고, 속도 정보를 기반으
로 거리 추정을 수행한다.
골프공속도계산(Golf Ball Speed Calculation)은골프공
추출기로부터전달받은골프공의위치정보와프레임정보

를활용하여수행한다. 골프공속도계산식은다음과 같다. 

  

×
(1)

골프공의 속도()는 시작 프레임 번호( )와 종료 프레

임 번호( )의 번호 차이와 동영상의 초당 프레임 속도인

30을 이용해골프공이동 시간을 계산하고, 퍼팅 연습기와
골프공간의거리()를이용하여산출된다. 는 퍼팅연습
기의 설치 환경에 따라 달라질 수 있으며 본 연구에서는

0.835m로 설정한다.
골프공의 퍼팅 거리 추정을 위해, 세 가지 회귀 모델을
비교 실험한 후 가장 낮은 평균 절대 오차(MAE, Mean 
Absolute Error)를보인 모델을 최종적으로 선정하였다. 실
험에 사용된 회귀 모델은 로버스트 회귀(Robust Regres- 
sion)[20], 베이지안 선형 회귀(Bayesian Linear Regres- 

sion)[21], 다항 회귀(Polynomial Regression)[22]로, 각모델에
골프공의 속도를 입력하여 거리를 출력하도록 설계한다.
로버스트 회귀 모델은 데이터에 이상치(outliers)가 존재
할 경우, 이상치의 영향을 최소화하여 보다 안정적인 회귀
분석을수행할 수 있도록 설계된 방법이다. 데이터마다 가
중치(weight)를 부여하며, 이상치로 간주되는 데이터는 낮
은 가중치를 할당받는다. 본 실험에서는 Huber 손실 함수
를사용하여잔차가작은경우에는제곱손실을, 잔차가큰
경우에는 선형 손실을적용하였다. Huber 손실함수 

는 식 (2)와 같이 정의된다.

 












 if≺ 

 


 if≥ 

(2)

여기서, 은 실제값과 예측값 사이의 차이, 즉 오차

(error)를나타낸다. 이함수에서는이상치로간주되는전환
점을결정하며, 본논문에서는실험적으로  = 1.53으로설
정한다.
베이지안 선형 회귀는 베이지안 방법론을 적용한 선형

회귀 모델로, 파라미터에 대해 사전 확률(prior)을 설정하
고, 이를바탕으로데이터에대한사후확률(posterior)을갱
신하는방식으로예측을 수행한다. 이 모델은 예측값에 대

그림 2. 속도 측정하는 구간의 프레임 번호와 골프공의 y 좌표
Fig. 2. Frame numbers of the speed measurement section and the y-coordinates of the golf ball
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한 불확실성을 정량적으로 나타낼 수 있으며, 예측의 신뢰
도또한함께제공할수있다는특징이있다. 모델은식 (3)
과같은선형방정식으로표현된다. 여기서 는퍼팅거리, 

는 골프공의 속도, 는 회귀 계수,  는 회귀 계수에
대한 정규분포의분산이다. 회귀계수 의사후평균( )

은 다음과 같이 계산된다.

  
    (3)

최종 예측( )은회귀계수의사후평균을기반으로 계산
된다.

   (4)

다항 회귀 모델은 입력 변수와 출력 변수 간의 관계가

선형적이지 않을 경우, 다항식을 사용하여 비선형 관계를
모델링하는회귀방법이다. 이모델은선형회귀의확장형
태로, 높은차수의다항식을사용하여더욱 복잡한 관계를
모델링할 수 있다. 본 연구에서는 데이터의 특성을 고려하
여 다항식 차수 를 10으로 설정하였다. 다항 회귀는 식
(5)와 같이 표현된다. 는 예측하고자 하는 출력값이고, 
는입력값을나타낸다. 는각항의회귀계수(coefficient)

이며, 는 실제 값과 모델이 예측한값의 차이를나타내는
오차항이다.

    
 ⋯

  (5)

이와같이세가지회귀모델을실험하여, 각모델의평균
오차를 비교하고, 퍼팅 거리예측에서가장 우수한 성능을
보인 모델을 선정한다.

Ⅲ. 실험 결과

1. 실험 환경

본연구에서는골프공 탐지신경망의미세 조정및탐지

성능 평가의 목적으로 퍼팅 연습기로 퍼팅하는 모습을 디

지털카메라로직접촬영하여동영상데이터셋을구축하였

다. 데이터셋은총 51개의동영상으로구성되며, 각동영상
은 1920x1080 해상도와 평균 약 8초 길이를 갖는다. 모든
동영상은다양한거리를타격하는퍼팅동작을포함하며, 각
동영상에는퍼팅거리(m)와시작및종료프레임번호를함
께기록하였다. 동영상데이터셋은학습데이터 32개, 검증
데이터 9개, 실험데이터 10개로분할하였으며, 실험데이터
는성능 평가에만사용하였다. 또한, 탐지신경망의일반화
성능을확인하기위해기존데이터셋외에추가적으로다른

배경에서 촬영한 unseen 퍼팅 동영상 4개를 사용하였다.
YOLOv8 탐지신경망의학습에는퍼팅동영상데이터셋
의 모든 동영상을 프레임 단위로 추출하여 학습용 이미지

데이터셋으로 변환하였다. 결과적으로 학습 데이터는

7,415장, 검증데이터는 2,124장, 실험 데이터는 2,222장의
이미지로 구성되었다. 또한, 과적합을 완화하고 다양한 배
경에서의 학습 성능을 향상시키기 위해 Roboflow에서 제
공하는 골프공 데이터셋[19]을 추가로 사용하였다. 해당 데
이터셋은 학습 데이터 2,198장, 검증 데이터 226장, 실험
데이터 171장으로 구성된다. 두 데이터셋을 병합하여 총
14,356장의 학습 데이터를 생성하였으며, 이를 활용해

YOLOv8 신경망의 ‘sports ball’ 클래스를 ‘golf ball’ 클래
스에 맞게 미세 조정 학습하였다. 미세 조정 학습을 위한
하이퍼파라미터를 다음과 같이 설정하였다. 학습률은
1.0e-06, epoch 수는 50으로설정하였으며, AdamW 옵티마
이저와모멘텀(momentum) 0.937을사용하였다. 이미최적
화가잘 되어 있는 사전 학습된신경망을 활용하므로 학습

률을낮게설정하고 epoch 수를최소화하여과도한가중치
변화와과적합을방지하였다. 또한, 가중치감소(weight de-
cay)를적용할수있는 AdamW 옵티마이저를 사용하여신
경망의 일반화 성능을 향상시키고자 하였다.
회귀모델학습에는동영상데이터셋에서기록된퍼팅거

리와 시작 및 종료 프레임 번호로 골프공의 속도를 계산한

데이터를 사용하였다. 학습 데이터는 퍼팅 동영상 데이터셋
의 train과 valid 데이터를합쳐 27개로구성하였고, test 데이
터 10개는성능평가에사용되었다. 이를통해퍼팅 거리와
골프공속도의관계를모델링하고, 거리예측성능을평가하였
다. 학습및실험은 AMD Ryzen 9 5950X CPU와 NVIDIA 
GeForce RTX 2080 Ti(11GB VRAM) GPU를사용하였다.
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2. 실험 결과

2.1. 딥러닝 기반 탐지 신경망과 추적 알고리즘 조합의 탐

지 실험

[표 1]에서는 YOLOv8 Large 신경망과신호처리기반추
적알고리즘의조합탐지성능을나타낸다. 실험결과에따
르면, 골프공 탐지 신경망으로 YOLOv8 Large, 신호처리
기반추적알고리즘으로 Median Flow를사용한조합이 평
균 70.6%로가장높은탐지성능을보였다. 반면, 신호처리
기반 추적 알고리즘으로 CSRT와 MOSSE를 사용한 경우
mAP@50이각각평균 43.3%와 23.8%로낮은성능을기록
하였다.

Median Flow는 빠른 움직임과 상대적으로 일정한 크기
의 객체를 안정적으로 추적하는 데 적합한 특성을 가지고

있어퍼팅환경에서높은탐지성능을보였다. 반면, CSRT
와 MOSSE는 급격한 크기 변화나 위치 변동에 적응하는
데한계가있어, 골프공의크기와움직임이달라질경우추
적 성능이 저하되는 모습을 보였다.

2.2. 탐지 신경망을 활용한 탐지 실험
[표 2]는 사전 학습된 YOLOv8 Large 신경망과미세조
정훈련된 YOLOv8 Large 신경망의탐지성능을보여준다. 
사전 훈련 신경망의 mAP@50은 평균 49.5%로, 골프공의
속도가 빠를수록 탐지 성능이 낮아지는 경향을 확인할 수

있다. 반면, 미세 조정 훈련 신경망의 mAP@50은 평균

98.9%로, 거의 모든 골프공을 성공적으로 탐지하며, 골프
공 속도가 빨라져도높은 mAP@50을 유지하는모습을 보
여준다. [그림 3]은 YOLOv8 Large의 사전 훈련 신경망과
미세 조정 훈련 신경망의 mAP@50을 비교한 그래프이다.
다만, 미세 조정 훈련 신경망의 mAP@50 성능이 평균

98%로 매우 높게 나온 점은 과적합(overfitting)의 가능성
을시사한다. 본연구를위해구축한자체데이터셋은실내
퍼팅 환경을 촬영한 영상으로, 고정된 배경으로 인해 변수
가 적어 과적합이 발생하기 쉬운 조건이다. 퍼팅연습기는
주로 실내에서 사용되지만, 사용자에 따라 환경이 변화할
수 있으므로 다양한 배경에서 성능이 일정하게 유지되는

일반화 성능이 요구된다.
그러나 unseen 퍼팅동영상에대해서도신경망이안정적
으로 골프공을 탐지하는 결과는, 단순한 과적합이 아닌 일
반화된성능을보였음을시사한다. [표 3]에서는미세조정
신경망이 실내 환경과 다른 배경에서도 높은 성능을 보였

음을확인할수있다. 따라서미세조정신경망은실내퍼팅
환경에서 신뢰할 수 있는 탐지 성능을 제공한다고 평가할

수 있다. [그림 4]는 Unseen 퍼팅 동영상에 대한 YOLOv8 
Large의 사전 훈련 신경망과 미세 조정 훈련 신경망의

mAP@50을 비교한 그래프이다. 배경이 다른 데이터셋에
서도 미세 조정된 신경망이 사전 학습된 신경망보다 높은

mAP@50을유지하는모습을보여준다. [그림 5]는서로다
른데이터셋에서 YOLOv8 Large의미세조정신경망에의
한 탐지 결과를 보인다.

Distance(m)  
Model 2.7 4.0 5.8 7.7 8.7 10.2 12.0 13.9 15.3 17.7 Average

YOLOv8
Large

CSRT 30.7 36.6 58.6 2.89 83.7 7.57 76.4 11.5 82.5 41.9 43.3 

Median Flow 63.3 47.9 73.6 91.3 19.4 96.4 95.8 66.7 88.8 62.8 70.6

MOSSE 24.1 83.6 4.85 2.89 9.25 5.92 24.5 12.0 58.4 13.6 23.8 

표 1. YOLOv8과 신호처리 기반 추적 알고리즘의 거리별 mAP@50 성능(%)
Table 1. mAP@50(%) of YOLOv8 and signal processing-based tracking algorithms at different distances

Distance(m)
Model 2.7 4.0 5.8 7.7 8.7 10.2 12.0 13.9 15.3 17.7 Average

mAP@50
(%)

Pre-trained 84.4 53.4 57.7 42.8 37.0 41.4 39.2 50.8 24.4 63.9 49.5

Fine-tuning 95.2 99.2 99.9 99.9 99.9 99.95 99.9 99.9 99.9 95.3 98.9

표 2. YOLOv8의 사전 훈련 신경망과 미세 조정 신경망의 mAP@50(%)
Table 2. mAP@50(%) of the pre-trained and fine-tuned models of YOLOv8
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그림 3. YOLOv8의 사전 훈련 신경망과 미세 조정 신경망의 mAP@ 비교 그래프
Fig. 3. Comparison graph of mAP@50 between the pre-trained and fine-tuned models of YOLOv8

Distance(m)
Model 2.7 4.0 5.8 7.7 8.7 10.2 12.0 13.9 15.3 17.7 Average

mAP@50
(%)

Pre-trained 84.4 53.4 57.7 42.8 37.0 41.4 39.2 50.8 24.4 63.9 49.5
Fine-tuning 95.2 99.2 99.9 99.9 99.9 99.95 99.9 99.9 99.9 95.3 98.9

표 3. 달라진 배경에서의 사전 훈련 신경망과 미세 조정 신경망의 mAP@50(%)
Table 3. mAP@50(%) of the pre-trained and fine-tuned models in different background 

그림 4. Unseen 데이터셋에 대한 YOLOv8 사전 훈련 신경망과 미세 조정 신경망의 mAP@50 
비교 그래프
Fig. 4. Comparison graph of mAP@50 between the pre-trained and fine-tuned models of 
YOLOV8 on the unseen dataset
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그림 5. 미세조정에사용된데이터셋의탐지결과(상)와 Unseen 데이터셋의
탐지 결과(하)
Fig. 5. Detection results on the dataset used for fine-tuning (Top) and 
on the unseen dataset (Bottom)

2.3 딥러닝 기반 탐지 신경망 단독 사용 및 추적 알고리즘
조합의 FPS 비교 실험

[표 4]는 YOLOv8 Large 모델과전통적인신호처리기반
추적알고리즘을조합했을때의 FPS 성능을비교한결과이
다. YOLOv8 Large 신경망을단독사용시평균 30.32 FPS
를기록하며실시간처리기준인 30 FPS를충족하였다. 반
면, CSRT, Median Flow, MOSSE와 같은 신호처리 기반
추적 알고리즘을 함께 사용할 경우 각각 16.20, 20.68, 
21.92 FPS로 처리 속도가 눈에 띄게 감소하였다. 
이는 YOLOv8이 탐지한 골프공의 바운딩 박스 좌표를
추적기의 입력으로 전달한 후, 추적알고리즘이이를 기반

Model FPS

YOLOv8
Large

CSRT 16.20
Median Flow 20.68

MOSSE 21.92
Only YOLOv8 Large 30.32

표 4. YOLOv8과신호처리기반추적알고리즘의거리별 mAP@50 성능(%)
Table 4. mAP@50(%) of YOLOv8 and signal processing-based track-
ing algorithms at different distances

으로연속적인프레임에서추적을수행하는구조이기때문

이다. 특히 이러한 추적기들은 CPU 기반으로 동작하므로, 
GPU를활용하는딥러닝기반탐지기보다상대적으로연산
속도가 느릴 수밖에 없다. 그럼에도 불구하고 YOLOv8 
Large는 비교적 무거운 구조임에도 단독으로 실시간 처리
성능을확보할수있어, 실제응용환경에서도충분히활용
가능함을 시사한다.

2.4 회귀 모델 오차 실험
[표 5]는각회귀모델별실제거리와의평균오차를나타
낸다. 가장 적은 오차를 보인 모델은 베이지안 선형 회귀
모델로, 평균 오차는 1.53m이다. 1차 다항 회귀 모델, 2차
다항 회귀 모델, 로버스트 회귀 모델 순으로 각각 1.54m, 
1.59m, 1.60m의 평균 오차를 기록하였다. 이는 데이터가
전반적으로선형적인구조를가지며, 표본 수가 적고 일부
노이즈가존재하는특성상, 단순한회귀모델이더높은예
측안정성과일반화성능을보였음을시사한다. 한편, 다항
회귀 모델은 차수가 증가할수록 평균 오차가 점진적으로

커지는 경향을 보였다. 특히 5차 다항 회귀는 평균 오차가
13.264m로, 다른 모델들과 비교해 월등히 큰 오차를 기록
하였다. 이는 고차항이 학습 데이터의 패턴에 지나치게 민
감하게반응하여, 테스트 데이터에 대한 일반화 성능이 크
게 저하되었음을 의미한다.

Regression Model MAE(m)
Robust Regression 1.599

Bayesian Linear Regression 1.535

Polynomial Regression

First-order term 1.542
Second-order term 1.587
Third-order term 1.930

Fourth-order term 2.260
Fifth-order term 13.264

표 5. 다양한 회귀 모델의 거리 예측 MAE 성능
Table 5. MAE for different types of regression models

[그림 6]은학습데이터에대해로버스트회귀, 베이지안
선형 회귀 그리고 1차, 3차, 5차 다항 회귀 모델을 적용한
예측 결과를 시각화한 것이다. 전체적으로 베이지안 선형
회귀 모델은 학습 데이터의 분포를 잘 따라가며 안정적인

예측 선을 형성하였고, 1차 다항 회귀 또한 선형적인 경향
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을 잘 반영하였다. 반면, 5차 다항 회귀는 일부 구간에서
급격한 곡률 변화를 보이며 과적합된 경향을 보인다.

Ⅳ. 결 론

본 연구에서는 디지털 카메라와 컴퓨터 비전 기술을 활

용한퍼팅거리예측방법을제안하였다. 기존퍼팅연습기
는 압전 센서를 활용하지만, 센서 보정이 필요하고 환경적
요인에 취약하다는 한계가 있었다. 이를극복하기위해본
연구에서는 YOLOv8 Large 신경망을활용한객체탐지모
듈과 회귀 모델을 적용한 거리 추정 모듈을 개발하였다.
실험 결과, 미세 조정된 YOLOv8 Large 모델이

mAP@50 98.9%의 성능을 보여 최적의 탐지 방법으로 선
정되었으며, 퍼팅 거리 추정에서는 베이지안 선형회귀모
델이 가장낮은 평균오차(1.5347m)를기록하며우수한성
능을 보였다. 또한, YOLOv8 Large는 비교적 복잡한 구조
임에도불구하고평균 30.32 FPS의실시간처리성능을달
성하여, 탐지정확도와처리속도측면모두에서뛰어난효
율을 보였다. 일반화 성능을평가하기 위해 unseen 환경에
서도 실험을 진행한 결과, 미세 조정된 탐지 모델이 높은
성능을 유지하며기존센서기반방식의 한계를극복할가

능성을 입증하였다.

본 연구의결과는골프 퍼팅훈련시스템에서컴퓨터비

전 기반의 거리 예측 방법이 실용적 대안이 될 수 있음을

보여준다. 향후 연구에서는 탐지 신경망의 경량화 및 실시
간 처리 최적화를 통해 실제 제품 적용 가능성을 높이는

것을목표로하며, 퍼팅거리데이터의정밀한분석을통해
회귀 모델의 예측 성능을 더욱 개선하는 방향으로 연구를

확장할 계획이다.
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김 지 영

- 2023년 : 국립한밭대학교 정보기술대학 정보통신공학과 학사
- 2025년 : 국립한밭대학교 소프트웨어융합대학원 지능미디어공학과 석사
- 2025년 ~ 현재 : 윌러스표준기술연구소 주임연구원
- ORCID : https://orcid.org/0009-0003-5855-2692
- 주관심분야 : 영상처리, 영상압축, 비디오압축, 신호처리, 컴퓨터 비전, 딥러닝

최 해 철

- 1997년 : 경북대학교 전자공학과 학사
- 1999년 : 한국과학기술원 전기전자공학과 석사
- 2004년 : 한국과학기술원 전기전자공학과 박사
- 2004년 ~ 2010년 : 한국전자통신연구원 방송미디어연구부 선임연구원
- 2010년 ~ 현재 : 한밭대학교 정보기술대학 지능미디어공학과 교수
- ORCID : https://orcid.org/0000-0002-7594-0828
- 주관심분야 : 영상처리, 비디오압축, 컴퓨터 비전, 딥러닝
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