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Abstract

A conventional putting training device utilizes piezoelectric sensors, but they require artificial calibration due to sensor
characteristics, posing a limitation. To address this issue, this study introduces a putting distance prediction method using a digital
camera and computer vision technology. The proposed method compares signal processing and deep learning techniques to design a
golf ball detection and tracking module, along with an additional module that converts the observed velocity into putting distance.
Comparative analysis of various detection and tracking methods showed that a fine-tuned YOLOV8 Large neural network achieved
the highest performance with an mAP@50 of 98.9% in the detection module and demonstrated real-time capability by achieving an
average of 30.32 FPS despite its relatively complex architecture, indicating strong efficiency in both detection accuracy and
processing speed. The Bayesian linear regression model demonstrated relatively superior performance in the putting distance
estimation module. The proposed method validates the feasibility of computer vision-based putting distance prediction, overcoming
the limitations of conventional sensor-based approaches.

Keyword : Putting Distance Prediction, Golf Ball Tracking, Golf Ball Detection, Sports Technology, Sensor-Free
Measurement
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Fig. 2. Frame numbers of the speed measurement section and the y-coordinates of the golf ball
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Table 1. mAP@50(%) of YOLOv8 and signal processing-based tracking algorithms at different distances
Distance(m) | 57 | 40 | 58 | 77 | 87 | 102 | 120 | 139 | 153 | 17.7 | Average
Model
CSRT 307 | 366 | 586 | 289 | 837 | 757 | 764 | 115 | 825 | 419 433
YLOa"r(g):B Median Flow | 63.3 | 479 | 736 | 913 | 194 | 94 | 958 | 66.7 | 888 | 628 706
MOSSE 241 | 836 | 485 | 289 | 925 | 592 | 245 | 120 | 584 | 136 23.8
F 2. YOLOv8S| AKM &3 AlZ42zt DM =& AZLS| mAP@50(%)
Table 2. mAP@50(%) of the pre-trained and fine-tuned models of YOLOv8
Distance(m) | 57 | 40 | 58 | 77 | 87 | 102 | 120 | 139 | 153 | 177 | Average
Model
mAP@50 | Pretrained | 84.4 | 534 | 577 | 428 | 370 | 414 | 392 | 508 | 244 | 639 495
(%) Finetuning | 952 | 99.2 | 99.9 | 999 | 99.9 | 9995 | 999 | 999 | 99.9 | 953 98.9
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Performance Comparison: Pre-trained vs Fine-tuning
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Fig. 3. Comparison graph of mAP@50 between the pre-trained and fine-tuned models of YOLOv8
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Table 3. mAP@50(%) of the pre-trained and fine-tuned models in different background

16

Distance(M) | 57 | 40 | 58 | 77 | 87 | 102 | 120 | 139 | 153 | 17.7 | Average
Model
mAP@50 | Pre-trained 84.4 53.4 57.7 428 | 37.0 414 39.2 50.8 24.4 63.9 49.5
(%) Fine-tuning 95.2 99.2 99.9 99.9 | 99.9 | 99.95 99.9 99.9 99.9 95.3 98.9
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