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요 약

토큰 프루닝(Token pruning)은 멀티모달 대형 언어 모델(Multimodal Large Language Models, MLLMs)의 효율성을 향상시키는 핵
심 기법으로 부상하고 있다. 그러나 대부분의 기존 접근법은 고정된 비율 또는 깊은 층의 어텐션 신호에 의존한다. 본 연구에서는 이
러한 한계를 극복하고 프루닝 과정을 체계적으로 이해하기 위해, MLLM 비전 인코더 내에서 깊이에 따른 어텐션의 재분배 양상을 분
석하였다. [CLS] 어텐션의 층별 분석 결과, 얕은 층은 높은 엔트로피의 다양한 패턴을 보이고, 깊은 층은 낮은 엔트로피의 전역 요약
으로 수렴하며, 중간 층에서는 급격한 엔트로피 감소가 나타나 위상 전이(phase transition)를 형성함을 확인하였다. 이러한 분석을 바
탕으로, 우리는 성능과 효율성을 재학습 없이 균형 있게 조절하는 엔트로피 기반 적응적 층 선택(entropy-based adaptive layer 
selection) 방법을 제안하며, 이는 효율적인 MLLM 설계를 위한 실질적인 지침을 제공한다.

Abstract

Token pruning has emerged as a key technique for improving the efficiency of multimodal large language models (MLLMs), yet 
most approaches rely on fixed or deep-layer attention signals. To better understand and optimize pruning, we analyze how attention 
is redistributed across depth within MLLM vision encoders. A layer-wise examination of [CLS] attention reveals a consistent 
depth-dependent pattern: shallow layers exhibit high-entropy, diverse attention; deep layers converge into low-entropy global 
summaries; and mid layers experience a sharp entropy drop, marking a phase transition. Building on these findings, we propose an 
entropy-based adaptive layer selection that balances pruning efficiency and performance without retraining, offering practical 
guidance for efficient MLLM design.

Keyword : Multimodal Large Language Models, Vision-Language Models, Visual Token Pruning, Inference Optimization, 
On-device AI

Copyright Ⓒ 2026 Korean Institute of Broadcast and Media Engineers. All rights reserved.
“This is an Open-Access article distributed under the terms of the Creative Commons BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/3.0) which 

permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited and not altered.” 

레터논문 (Letter Paper)
방송공학회논문지 제31권 제1호, 2026년 1월 (JBE Vol.31, No.1, January 2026)
https://doi.org/10.5909/JBE.2026.31.1.181
ISSN 2287-9137 (Online) ISSN 1226-7953 (Print)



182 방송공학회논문지 제31권 제1호, 2026년 1월 (JBE Vol.31, No.1, January 2026)

Ⅰ. 서 론

최근멀티모달대형언어모델(MLLMs)[1]은뛰어난성능

을보이지만, 입력이미지를수백개의시각토큰으로처리
함에 따라 연산량이 증가하고 추론 속도가 저하되는 한계

를가진다. 이를완화하기위해시각토큰프루닝기법[2][3][4]

이 제안되었으나, 기존 방법들은 주로비전 인코더의 단일
고정층, 특히깊은층의어텐션에의존하여토큰중요도를
판단한다. 이러한 접근은 중요한 시각정보가항상 마지막
계층에 집중된다는 가정에 기반하나, 실제로는 입력에 따
라해당가정이성립하지않는다. 본연구는트랜스포머기
반 비전 인코더 내부의 어텐션 분포를 정량적으로 분석하

여, 계층깊이에따른엔트로피변화패턴을규명한다. 분석
결과, 얕은층에서는어텐션이넓게분포하여높은 엔트로
피를 보이는 반면, 깊은 층으로 갈수록 일부 핵심 토큰에
집중되어 낮은 엔트로피를 나타낸다. 또한 중간 계층에서
엔트로피가 급격히 감소하는 전이 구간이 관찰되었으며, 
이는 지역적 특징 탐색에서 전역적 의미 통합으로의 전환

을 반영한다. 이러한 엔트로피 동역학은 이미지 복잡도에
따라 달라지는 입력 의존적 특성을 보인다. 이러한 관찰을
바탕으로, 본연구는비전인코더를얕은층과깊은층으로
구분하고, 각 구간에서 대표 계층을 입력별로 적응적으로
선택하는층선택기반시각토큰프루닝기법을제안한다.

Ⅱ. 실증적 분석

본절에서는멀티모달 대형언어모델의비전인코더내

부에서어텐션이깊이에따라어떻게재분배되는지를실증

적으로분석하였다. 이를위하여 CLIP 기반비전인코더를
대상으로각계층 에서 [CLS] 토큰이패치토큰에부여하

는 어텐션분포  ∈을 추출하였다. 여기서 은 패치

토큰의개수를 의미한다. 각 계층의 정보집중도를정량화
하기위해 Shannon 엔트로피 을다음과같이정의하였다.

 
  



 log
 

실험결과, 그림 1에서보이듯어텐션엔트로피는레이어
가 깊어질수록 전반적으로 감소하는 경향을 보였다. 이는
얕은 층에서는 어텐션이 여러 토큰에넓게 분산되는 반면, 
깊은 층에서는 소수의 중요한 토큰에 집중되기 때문이다. 
즉, 비전 인코더는 초기에는 다양한 지역적 정보를탐색하
고, 후반으로 갈수록 이를 압축하여 전역적인 요약을 형성
한다. 그림 2의어텐션시각화역시얕은층의분산된분포
와 깊은 층의 집중된분포를보여주며이러한엔트로피감

소 경향을 뒷받침한다. 

중간레이어구간에서   값이갑자기크게증가하는스

파이크(spike)가 나타났으며, 이는 토큰 중요도가 급격히
재정렬되는구간임을의미한다. 즉, 모델은얕은층에서다양한 

그림 1. 중간 레이어에서의 엔트로피 및 KL 발산의 전이 현상
Fig. 1. Entropy and KL-divergence transition at mid layers

또한 엔트로피는 단조 감소가 아니라, 중간 레이어 부
근에서급격히감소하는구간이존재함을확인하였다. 이
러한 변화의 크기를 정량화하기 위해, 인접한 레이어 간
어텐션분포차이를 KL-divergence로측정하였다. 그결과, 
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그림 2. 레이어별 확산형 및 응집형 어텐션 패턴
Fig. 2. Dispersed and concentrated attention patterns in shallow and 
deep layers

그림 3. 입력 이미지별 최대 엔트로피 레이어의 상이성
Fig. 3. Variation of maximum-entropy layers across input images

 

토큰을탐색한뒤중간층에서핵심정보를선별하고, 깊은
층에서 압축된 정보에 집중한다. 또한 그림 3에서 보이듯
엔트로피의 최대·최소 지점은 이미지마다 달라, 엔트로피
변화가 입력 이미지에 따라 달라지는 동적 특성임을 확인

할 수 있다.

Ⅲ. 제안하는 방법

실증적분석을통해층별엔트로피분기현상과입력의

존적 계층 동역학을 확인하였다. 얕은층은 높은 엔트로피
로 지역적 다양성을 유지하고, 깊은층은 낮은 엔트로피로
전역적의미를 응축한다. 또한 최대·최소 엔트로피를갖는
계층은 입력 특성에 따라 달라지므로, 고정된층을 사용하
는 방식보다 입력별로 동적으로 계층을 선택하는 접근이

효과적이다. 이에 따라 본 연구는 각 입력 이미지에 대해
엔트로피가 최대인 얕은 층과 최소인 깊은 층을선택하며, 
선택 과정은 식 (3)과 같이 정의된다.

  arg
∈

max    arg
∈

min  (3)

얕은층 은지역정보의다양성을, 깊은층 은전역적

의미를담당하므로, 두층에서각각전체토큰의일부를선
택하되 그 비율의 합은 1로 제한한다. 선택된 토큰을 결합
하고, 제거된토큰은가장유사한유지토큰에병합하여프
루닝이후에도시각적다양성과의미적일관성을보존한다.

Ⅳ. 실험

1. 주요 실험 결과

본 연구에서는 제안된 방법을 널리 사용되는 오픈소스

모델 LLaVA-1.5-7B에적용하였다. 비전토큰의선택비율
은각각 = 0.4,   = 0.6으로설정하였다. 6–8번째레이

어는 지역적 특징을 포착하기 위해 선택되었으며, 20–21
번째레이어는심층적의미정보를표현하기위해선택되었다.

 

Method TextVQA[4] MME[5] VizWiz[8] Avg.
LLaVA-1.5-7B 58.2 1506 50.1 100.0%

FastV 51.6 973 49.1 83.7%
SparseVLM 52.1 1190 49.4 89.0%
VisionZip 55.7 1365 52.9 97.3%
DivPrune 54.5 1334 53.6 96.4%

Ours 56.0 1416 54.1 99.4%

표 1. LLaVA-1.5-7B 모델이 64개의 시각 토큰을 유지할 때의 9개 멀티모달
벤치마크 결과
Table 1. Results of LLaVA-1.5-7B on nine multimodal benchmarks 
when retaining 64 visual tokens

Method TextVQA[4] MME[5] VizWiz[8] Avg.
LLaVA-Next-7B 60.3 1512 55.2 100.0%

FastV 52.2 1099 51.3 84.1%
SparseVLM 56.5 1386 54.2 94.5%
VisionZip 58.8 1444 56.2 98.2%
DivPrune 56.2 1423 55.6 96.0%

Ours 58.5 1465 55.8 98.3%

표 2. LLaVA-Next-7B 모델이 320개 시각 토큰을 유지할 때의 9개 멀티모달
벤치마크 결과
Table 2. Results of LLaVA-Next-7B on nine multimodal benchmarks 
when retaining 320 visual tokens

 

표 1에서 보이듯이, 원본 576개의 비전 토큰을 64개(약
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11%)로축소하는공격적인프루닝설정에서도, 3개벤치마
크 평균 성능 저하는 0.6%에 불과하였다. 이는 FastV[2], 
SparseVLM[3]와 같은 LLM 어텐션 기반 방법뿐 아니라
VisionZip[6] 및유사도기반방법인 DivPrune[7]보다도우수

한 성능을 기록하였다. 더 나아가, 표 2와 같이 2,880개의
비전 토큰을 사용하는 LLaVA-NeXT-7B에서도 320개 토
큰만 유지한 설정에서다른 베이스라인 대비 가장 높은 성

능을 달성하였다.
표 3에서는레이어선택전략에따른성능을비교하였다.
고정 레이어 쌍(L6–L20)은 기준 성능을 보였고, adaptive
전략 중 Min–Max와 Min–Min은 성능이 낮았다. Max–
Max는 일부 개선을 보였으나, 제안한 Max–Min 전략이
가장우수했으며, 이는얕은층의다양성과깊은층의전역
정보를 조합하는 것이 효과적임을 보여준다.

 

Strategy TextVQA MME
L6–L20 55.70 1389

Min–Max 55.62 1362
Min–Min 55.64 1379
Max–Max 55.84 1401

Max–Min (Ours) 56.02 1416

표 3. 엔트로피 기반 레이어 선택에 대한 ablation 실험
Table 3. Ablation study of entropy-based layer selection

Method #Tokens FLOPs↓ Accuracy ↑
Default 576 3.82T 58.2
FastV 64 1.07T 51.6

SparseVLM 64 1.08T 52.1
Ours 64 0.42T 56.0

표 4. 주요 연산 지표 비교
Table 4. Comparison of Key Computational Metrics

2. 효율성 분석

표 4에나타난바와같이, 제안된방법은 TextVQA 데이
터셋에서 64개 토큰만을사용하여프루닝을 수행했음에도, 
기존 LLaVA-1.5-7B 모델대비 96.2%의 원본 성능을유지
하였다. FastV 및 SparseVLM 등기존방법들은 LLM 내부
에서토큰을선택및제거하지만, 우리의방법은 LLM 입력
이전 단계에서 프루닝을 수행하여 LLM 내부 연산량을 크
게 감소시킨다.

Ⅴ. 결 론

본연구에서는비전인코더의계층별엔트로피변화를분

석하여, 입력별로적응적으로층을선택하는새로운시각토
큰프루닝기법을제안하였다. 제안된방법은기존방식대비
높은 효율성과 성능 유지율을 동시에 달성하였으며, 멀티모
달 모델의 추론 효율화를 위한 효과적인 방향을 제시한다.  
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