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Visual Token Pruning Based on Entropy Dynamics in Vision
Encoders of Multimodal LLMs

Changwoo Baek™, Sohyeon Kim”", Jouwon Song®”, Kwang-Ryul Baek”, and Kyeongbo Kong™*
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gk AE FEY 2R FFS AAHLE osfsty] Hsl, MLLM HIA Q1FH wjelxl Zojo] mE ot de] Aliu) Fs &
A4k [CLS] ofelde] ¥ B4 Ad) ¢ 22 2 dEZF gUdl dEs Ho|y, 4 5 2 dEZT Ho Q9o
LR FHEH, 1 SelMe wAT AERY Favh vet 914 Jol(phase transition)E 44 %HE eIkl ol £4& vt
gog fEe Aed E&AE ATE flol #¥ A xdEse JERT 7§ A3H I A9 (entropy-based adaptive layer
selection) WS AFslH, ol E&AQ MLLM AAE 918 AZA] AL At

Abstract

Token pruning has emerged as a key technique for improving the efficiency of multimodal large language models (MLLMs), yet
most approaches rely on fixed or deep-layer attention signals. To better understand and optimize pruning, we analyze how attention
is redistributed across depth within MLLM vision encoders. A layer-wise examination of [CLS] attention reveals a consistent
depth-dependent pattern: shallow layers exhibit high-entropy, diverse attention; deep layers converge into low-entropy global
summaries; and mid layers experience a sharp entropy drop, marking a phase transition. Building on these findings, we propose an
entropy-based adaptive layer selection that balances pruning efficiency and performance without retraining, offering practical
guidance for efficient MLLM design.

Keyword : Multimodal Large Language Models, Vision-Language Models, Visual Token Pruning, Inference Optimization,
On-device Al
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Table 1. Results of LLaVA-1.5-7B on nine multimodal benchmarks

when retaining 64 visual tokens

Method TextVQAM MME®! VizWiz® Avg.
LLaVA-1.5-7B 58.2 1506 50.1 100.0%
FastV 51.6 973 49.1 83.7%
SparseVLM 52.1 1190 494 89.0%
VisionZip 55.7 1365 52.9 97.3%
DivPrune 54.5 1334 53.6 96.4%
Ours 56.0 1416 54.1 99.4%
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Table 2. Results of LLaVA-Next-7B on nine multimodal benchmarks

when retaining 320 visual tokens

Method TextVQA®Y  MME VizWiz® Avg.
LLaVA-Next-7B 60.3 1512 55.2 100.0%
FastV 52.2 1099 51.3 84.1%
SparseVLM 56.5 1386 54.2 94.5%
VisionZip 58.8 1444 56.2 98.2%
DivPrune 56.2 1423 55.6 96.0%
Ours 58.5 1465 55.8 98.3%
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Table 3. Ablation study of entropy-based layer selection

Strategy TextVQA MME
L6 -L20 55.70 1389
Min - Max 55.62 1362
Min - Min 55.64 1379
Max - Max 55.84 1401
Max - Min (Ours) 56.02 1416
4. FQ YA X E |l
Table 4. Comparison of Key Computational Metrics
Method #Tokens FLOPs | Accuracy !
Default 576 3.82T 58.2
FastV 64 1.07T 51.6
SparseVLM 64 1.08T 52.1
Ours 64 0.42T 56.0
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