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Abstract

Synthetic data addresses data scarcity in vision models but suffers from semantic gaps when applied to real-world scenarios.
This paper introduces a novel parameter-efficient fine-tuning (PEFT) architecture targeting the CLS token pathway to mitigate this
gap. We freeze the DINOv2 backbone to preserve geometric representations and perform post-hoc refinement using a Residual
LoRA module, cosine classifier, and contrastive alignment head. Under an extreme 10-shot real-data setting, our method updates
about 1% of parameters yet achieves an 8.7% accuracy improvement over synthetic-only training. t-SNE analysis confirms effective
semantic alignment between synthetic and real domains.

Keyword : Domain Adaptation, Synthetic Data, Vision Transformer, CLS Token, Residual LoRA

a) X°13 AUMLE(AIML Team, Xiilab)
¥ Corresponding Author : £8%(Yunjeong Yong)
E-mail: y.yong@xiilab.com
Tel: +82-2-2039-3145
ORCID: https://orcid.org/0009-0001-3164-8569
# This work was supported by the Technology Innovation Development Program for SMEs (Market Expansion Type) funded by the Ministry of
SMEs and Startups (MSS), Republic of Korea, and managed by the Korea Technology and Information Promotion Agency for SMEs (TIPA)
(RS-2024-00470370).
+ Manuscript December 4, 2025; Revised January 8, 2026; Accepted January 9, 2026.
Copyright © 2026 Korean Institute of Broadcast and Media Engineers. All rights reserved.

“This is an Open-Access article distributed under the terms of the Creative Commons BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/3.0) which
permits unrestricted non-commercial use. distribution. and reproduction in any medium. provided the original work is proverly cited and not altered.”



186 W

ofy

Fota)=2A A3 A1, 20269 19

.M E
Ot E §4 doleE 283 vl B g5 v 8-S
A o "gax.-zy Aold whE E=Hd 7Y
(Domain Gap) 22 487 A5 As7h Bl o) &
&3}alz] 913 i W EDINOV2E! ) nAlFYS 3
A=t w7 993 e AL HES Fuked,

LoRA™ 5 PEFT 53} 32 Transformer W5-(QKV/FFN)
ko] 715Ishe o] dAeltk ¥ e Vit

%E}% CLS EZ F<tsto], w25 9
oA CLS 574 F7olvt 24 seiv|EE F
B3 (Post—hoc Refinement) 71RF 322 94
Y EYXE gsfsit}y. FA A S Z Residual
LoRA$} Cosine classifier'®, Contrastive AlignmentS 2
ol E£E T A BT ARY FES FA £
S AL /I 10shot 4 BN A kel
F 1% WTH0.26M)TF Sh5atHA & 944
+8.70%p(70.17%—78.87%) A% TS %_“éé 925}. T8
71 ot 2k

CLS 7 & 53} Residual LoRA: W& F2 e
CLS =90l AR 2} B2 2&sto] mudl &
£ ¢sjeit

kg7 AE FZ: Cosine Classifier?t Contrastive

AlignmentE Zgsl T B8 S SHEE st

E84 Y% AA sHeplE ) 1% elRek Sl 477)
Fo2 BN FAME B FIE A

1. CLS ZZ £3} Residual LoRA

(JBE Vol.31, No.1, January 2026)

T2l 1. CLS-Residual LoRA 7|8t 2l
Fig. 1. Overview of the proposed CLS-Residual LoRA architecture.
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I 1. CLS-Residual LoRA T4 24# Ablation Study Zut

Table 1. Ablation Study Results for Each Component of the Proposed CLS-Residual LoRA Method

Category Classifier Res. Lora Adapter Contrastive Target Train Data (10) Valid Accuracy (%)
Baseline (Source Only) Linear - - - 70.17
Cosine Baseline Cosine - - N 78.10
LoRA Only (Linear) Linear N - N 77.77
LoRA + Cosine Cosine N - N 77.61
LoRA + Cosine + Contrastive Cosine v v v 77.61
CLS-Residual LoRA Cosine v v v 78.87
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Table 2. Performance comparison with conventional baselines under the synthetic-to-real 10-shot setting

Method Head Backbone Update Trainable Parameters (%) Valid Accuracy (%)
Baseline (Source Only) Linear Frozen - 7017
Linear Probe®® 7 Linear Frozen <0.1 75.42
Cosine Baseline!® Cosine Frozen <0.1 78.10
Standard LoRA (QKV)“ Linear Partial 1.8 77.95
Adapter (Houlsby)® Linear Partial 3.2 77.63
Full Fine-tuning®® Linear Full 100 79.24
CLS-Residual LoRA (Ours) Cosine Frozen 1.1(0.26M) 78.87
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I 3. CLS EZ 7|¢t m89| Efey ZE(&M—AIAL 10-shot)

Table 3. Validation of CLS-token assumption under the synthetic-to-real 10-shot setting

Method Representation Valid Accuracy (%) Trainable Parameters (%) GFLOPs
Patch-only Mean pooling of patch tokens 76.45 0.28 1.84
CLS+Patch Concat (CLS, pooled patch) 78.92 0.52 2.31
Full Patch All patch tokens + attention pooling 77.89 2.14 18.42
CLS-only (Ours) CLS token 79.34 0.26 0.12
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