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I. 서 론

최근 영상 데이터 트래픽의 급격한 증가로 인해, 영상 

데이터의 효율적인 전송 및 저장을 위한 고성능 비디오 

압축 기술에 대한 요구가 지속적으로 증가하고 있다. 이

러한 요구에 대응하기 위하여 ISO/IEC MPEG과 ITU-T 

VCEG가 공동으로 구성한 Joint Video Experts Team 

(JVET)은 2020년에 차세대 비디오 압축 표준인 Versatile 

Video Coding (VVC)을 완성하였다[1]. VVC는 기존 표준

인 HEVC 대비 All intra (AI) 구성에서 Y, Cb 및 Cr 채널

에 대해 각각 -25.06%, -25.37%, -26.85%의 Bjøntegaard 

delta bitrate (BDBR) 성능을 달성하여, 다양한 응용 환경

에서의 고효율 영상 압축 개선을 달성하였다[2].

VVC의 표준화 이후, JVET은 추가적인 압축 성능 향상

을 목표로 VVC의 한계를 넘어서는 새로운 부호화 기술들

의 개발을 위하여 beyond VVC capability라는 이름으로 

새로운 기술들에 대한 다양한 탐색 연구개발을 진행하고 

있다. 이 과정에서 다양한 기술들의 평가를 위한 참조 소

프트웨어인 Enhanced Compression Model (ECM)을 만

들고 있으며, ECM을 기반으로 다수의 신규 기술들이 성
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요 약

최근 영상 데이터 트래픽의 급격한 증가로 인해, 보다 높은 압축 효율을 제공하는 영상 부호화 기술에 대한 요구가 지속적으

로 증가하고 있다. ISO/IEC MPEG과 ITU-T VCEG가 공동으로 구성한 Joint Video Experts Team (JVET)은 2020

년 Versatile Video Coding (VVC) 표준을 완료한 이후, VVC를 넘어서는 추가적인 압축 성능 향상을 목표로 Enhanced 

Compression Model (ECM)을 만들어 가며 다양하고 새로운 부호화 기술 탐색을 진행하고 있다. 특히 화면 내 예측은 부호

화 성능에 직접적인 영향을 미치는 핵심 요소로서, ECM에는 휘도 채널을 대상으로 한 다수의 신규 화면 내 예측 기술들이 반영

되어 왔다. 본 글에서는 ECM에 구현된 다양한 휘도 채널 화면 내 예측 기술들을 중심으로, 해당 기술들의 기본 동작 원리를 체

계적으로 정리하고 분석한다. 이를 위하여 ECM의 휘도 채널 화면 내 예측 기술들을 예측자 생성 방식에 따라 분류하고, 각 접

근 방식이 가지는 특징을 분석한다. 이러한 분석을 통하여 VVC 이후 화면 내 예측 기술의 설계 흐름과 향후 Beyond VVC 단

계에서 고려되어야 할 주요 방향을 제시하고자 한다.

차세대 비디오 코덱 표준 탐색기술(ECM/NNVC)
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능 및 복잡도 관점에서 비교되고 있다[3]. ECM-18.0 기준

으로, All Intra (AI) 구성에서 VTM 대비 Y, Cb 및 Cr 채널

에 대해 각각 -16.87%, -19.90%, -21.83%의 BDBR 성능

이 보고되었으며, 이는 VVC 표준화 이후에도 화면 내 예

측을 포함한 새롭게 적용된 기술들을 통해 추가적인 압축 

성능 향상이 가능함을 보여준다[4].

ECM에서는 특히 화면 내 예측 성능 향상을 위한 다양

한 기술들이 제안되었으며, 디코더 측에서 예측자를 유

도하거나 복수의 예측자를 결합하는 방식 등 기존 VVC

의 인트라 예측 구조를 확장하는 방향으로 기술이 발전하

고 있다. 이러한 인트라 예측 기술들은 압축 효율 측면에

서 의미 있는 성능 향상을 제공하는 반면, 계산 복잡도가 

증가하고 있다.

본 글에서는 ECM에 채택된 휘도 채널에서의 화면 내 

예측 관련 기술들을 중심으로, 각 기술의 기본 동작 원리

와 설계 특징을 정리하고 분석한다. 이를 통해 VVC 이후 

인트라 예측 기술의 발전 방향과 주요 설계 흐름을 체계적

으로 분석하고자 한다.

II. Beyond VVC에서의 화면 내 
부호화 방법

VVC 표준화 이후, JVET은 추가적인 압축 성능 향상을 

목표로 Enhanced Compression Model (ECM)을 중심

으로 다양한 화면 내 예측 기술들을 채택하고 있다. ECM

에 채택된 화면 내 예측 기술들은 기존 VVC에서의 화면 

내 예측 기술을 단순히 확장하는 데 그치지 않고, 새로

운 화면 내 예측 기술에 기반한 기법들 또한 함께 포함

하고 있다. 본 절에서는 ECM-19.0 버전을 기준으로, 현

재까지 채택된 휘도 채널 화면 내 예측 기술들을 중심으

로 설명한다.

ECM 기반 화면 내 예측 기술들은 크게 세 가지 설계 흐

름으로 분류할 수 있다. 첫 번째는 기존 VVC 인트라 예측 

도구를 보다 정밀하게 개선하는 방식이다. 이는 참조 샘

플 범위의 확장이나 후보 리스트 크기의 조정을 통해 보

다 정확한 예측자를 생성하는 기술들이다. 두 번째는 복

호화기측에서 예측자를 직접 유도하는 방식이다. 이는 현

재 블록 예측에 사용되는 인트라 예측 모드에 대한 인덱스 

신호를 줄이거나 제거함으로써 신호화 (Signaling) 오버

헤드를 감소시키는 기술들이다. 이 경우, 예측 모드에 대

한 명시적인 인덱스 신호 없이 복호화기가 주변 복원 샘플

을 기반으로 동일한 예측자를 유도할 수 있도록 설계된다. 

마지막으로, 사전 학습된 모델을 활용하여 예측자를 생성

하는 방식이 있다.

이러한 기술개발 흐름에 따라, ECM에 채택된 휘도 채널 

기반 화면 내 예측 기술들은 예측자를 생성하는 방식에 따

라 구분될 수 있다. DIMD[5], OBIC[6], TIMD[7]와 같은 복

호화기 기반 예측 모드 방법들은 현재 블록 주변의 복원된 

샘플로부터 방향성 정보 또는 통계적 지표를 추출하고, 이

를 기반으로 복수의 방향성 인트라 예측자를 생성한 후 가

중 결합을 통해 현재 블록에 대한 최종 예측자를 생성한다. 

이들 기법은 예측에 필요한 추가적인 정보가 비트스트림

으로 신호되지 않으며, 부호화기와 복호화기가 동일한 절

차를 수행함으로써 예측자가 재현되도록 설계되어 있다.

한편, MPDIP[8] 및 IntraNN[9] 모드는 사전 학습된 모

델을 이용하여 현재 블록의 예측자를 생성한다는 점에서 

기존의 방향성 기반 예측과 구별된다. 이러한 예측 모드에

서는 복원된 주변 참조 샘플을 입력으로 하여, 사전 학습

된 행렬 가중치 또는 신경망 모델을 통해 현재 블록에 대

한 예측자를 생성한다. 이때 사용되는 모델 정보는 부호화

기와 복호화기에 사전 정의되어 있으며, 추가적인 모델 파

라미터에 대한 신호 없이 예측이 수행된다.

<그림 1>은 ECM-19.0 기준에서 휘도 채널 화면 내 예

측 모드들이 어떠한 신호 구조를 통해 부호화되는지를 개

략적으로 나타낸 것이다. 각 화면 내 예측 모드는 예측자 

생성 방식에 따라 서로 다른 신호 구조를 가지며, 일부 모

드는 인트라 예측 모드 인덱스를 명시적으로 신호하는 반

면, 복호화기 유도형 예측 모드의 경우 예측 모드 인덱스 

없이도 복호화기에서 예측자를 재구성할 수 있다.
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이와 같이 ECM의 휘도 채널 화면 내 예측 모드들은 복

호화기에서 예측자를 생성하는 방식, 인트라 예측에 사용

되는 후보 리스트를 구성하는 방식, 그리고 사전 학습된 

모델을 이용하여 예측자를 생성하는 방식으로 구분될 수 

있으며, 각 방식은 예측 정확도, 신호화 오버헤드, 그리고 

계산 복잡도 측면에서 상이한 특성을 가진다.

<그림 1> ECM-19.0 기준 휘도 채널의 화면 내 예측 모드
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1. �Decoder-side Intra Mode 
Derivation (DIMD) 기술

DIMD 기술은 복호화기에서 현재 블록 주변의 복원 

샘플을 분석하여 인트라 예측자를 직접 유도하는 인트

라 예측 기술로, 인트라 예측 모드에 대한 명시적인 시그

널링 없이도 효율적인 예측을 가능하게 한다[5]. DIMD

는 Sobel 필터 기반의 기울기 분석을 통해 IPM (Intra 

Prediction Mode)별 통계 정보를 생성하고, 해당 통계에

서 두드러진 방향에 대응되는 다수의 예측자와 planar 예

측자를 가중 결합하여 최종 예측자를 생성한다. DIMD의 

전체 동작 과정은 다음과 같이 세 단계로 구성된다.

단계 1. 템플릿 영역 구성 (주변 참조 샘플 수집)

단계 1에서는 현재 블록의 상단 및 좌측 인접 복원 샘

플을 이용하여 템플릿 (template) 영역을 구성한다. 해당 

템플릿 영역은 Sobel 필터를 적용하기 위한 영역으로 정

의되며, 현재 블록 주변의 공간적 구조와 방향성 정보를 

반영하기 위한 입력 데이터로 사용된다. 이 과정에서 기

본적으로 상단 및 좌측 인접 참조 영역이 사용되며, 우상

단 및 좌하단 참조 영역은 복원된 샘플이 존재하는 경우에 

한해 추가적으로 활용된다. 참조 샘플의 가용 여부에 따

라 HoG 구성에 포함되는 영역이 결정되며, 이를 통해 주

변 참조 정보의 유효한 범위 내에서 방향성 통계가 안정적

으로 구성되도록 한다. <그림 2>에서 현재 블록 주변 템

플릿 영역은 HoG 구성을 위한 템플릿 영역을 의미한다.

단계 2. Sobel 기반 기울기 계산 및 HoG 구성

구성된 템플릿 영역에 대해 수평/수직 방향 Sobel 필터

를 적용하여 

를 생성하는 방식으로 구분될 수 있으며, 각 방식은 예측 정확도, 신호화 오버헤드, 그리고 계산 

복잡도 측면에서 상이한 특성을 가진다. 
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amplitude)는 연산 복잡도를 고려하여 다음과 같이 정의할 수 있다. 
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐺𝐺𝐺𝐺 =∣ 𝐺𝐺𝐺𝐺𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 ∣ +∣ 𝐺𝐺𝐺𝐺𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻 ∣ 

HoG가 구성되면, IPM별 amplitude 값을 기준으로 예측 후보 모드들을 내림차순 정렬한다. 그림 2

는 인접 템플릿을 사용하여 HoG을 구성하는 과정을 도식화한 것이다. 

 

 
그림 2. DIMD 모드에서의 HoG를 구성하는 과정 

 

단계 3. 상위 IPM 예측자 및 planar 예측자의 가중 결합 

단계 3에서는 단계 2에서 구성된 HoG의 amplitude가 가장 큰 상위 다섯 개의 IPM으로부터 생성

된 예측자(𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖, 𝑎𝑎𝑎𝑎 = 1, … ,5)와 planar 모드 또는 BV 정보를 사용하여 생성된 예측자(𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻𝐻𝐻/𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉))를 가중합하여 최

종 예측자를 생성한다. 최종 예측자(를 가중합하여 최종 예측자를 생성한다. 최종 예측자(𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷)는 아래 식 1과 같이 표현된다. 

𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = �𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖
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⋅ 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 + 𝑤𝑤𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻𝐻𝐻/𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉 ⋅ 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻𝐻𝐻/𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉 (1) 

이때 각 방향성 예측자에 대한 가중치 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖는 해당 방향성 모드의 HoG amplitude에 비례하도록 설

정하여, 전체 가중치 합이 48/64가 되도록 한다. 반면, 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻𝐻𝐻/𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉에 대한 가중치 𝑤𝑤𝑤𝑤planar/BV는 

16/64로 설정한다. 여기서 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻𝐻𝐻/𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉는 planar 모드와 BV 정보를 이용하여 각각 생성된 두 예

측자 중 하나로 결정된다. 구체적으로, 단계 1에서 정의한 reference template 영역을 대상으로 각 

예측자를 생성한 후, reference template 내의 복원된 샘플과의 SATD (sum of absolute transform 

difference) 비용을 계산한다. 두 예측자에 대한 SATD 비용을 비교하여, 더 낮은 비용을 갖는 예측

자를 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻𝐻𝐻/𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉로 선택한다. DIMD 모드는 VTM-11.0을 기준으로 Y, Cb, Cr 채널에서 각각 -

0.45%, -0.26%, -0.30%의 BDBR 이득을 보였다. 인코딩 시간과 디코딩 시간의 경우 113%와 110%

로 측정되었다. 

 

2. Occurrence based Intra Coding (OBIC) 기술 

OBIC 기술은 현재 블록 주변에 위치한 블록들에서 예측에 사용된 인트라 예측 모드들의 발생 빈

도를 Histogram of Occurrence(HoC) 형태로 분석하여, 복수 개의 방향성 인트라 예측자를 유도하

고 이를 가중 결합함으로써 최종 예측자를 생성하는 화면 내 예측 기술이다 [6]. OBIC의 전체 동

작 과정은 다음과 같은 단계로 구성된다. 

 

단계 1. 인접 및 비인접 후보 블록 수집 

단계 1에서는 현재 블록 주변의 인접(adjacent) 후보와 비인접(non-adjacent) 후보로 OBIC 후보 

리스트를 구성한다. 현재 블록에 대한 인접 후보 블록의 위치는 그림 3에 도시된 바와 같이 총 

13개의 위치에서 획득되며, 비인접 후보 블록은 그림 4에 도시된 바와 와 같이 총 18개의 위치에

서 획득된다. 이를 통하여 최대 31개의 후보 블록으로 OBIC 후보 리스트가 구성된다. 

 

 
그림 3 OBIC 모드에서의 인접 후보 위치 

 

)는 아래  

식 (1)과 같이 표현된다.

를 생성하는 방식으로 구분될 수 있으며, 각 방식은 예측 정확도, 신호화 오버헤드, 그리고 계산 

복잡도 측면에서 상이한 특성을 가진다. 

 

1. Decoder-side intra mode derivation (DIMD) 기술 

DIMD 기술은 복호화기에서 현재 블록 주변의 복원 샘플을 분석하여 인트라 예측자를 직접 유도

하는 인트라 예측 기술로, 인트라 예측 모드에 대한 명시적인 시그널링 없이도 효율적인 예측을 

가능하게 한다 [5]. DIMD는 Sobel 필터 기반의 기울기 분석을 통해 IPM(Intra Prediction Mode)별 

통계 정보를 생성하고, 해당 통계에서 두드러진 방향에 대응되는 다수의 예측자와 planar 예측자

를 가중 결합하여 최종 예측자를 생성한다. DIMD의 전체 동작 과정은 다음과 같이 세 단계로 구

성된다. 

 

단계 1. 템플릿 영역 구성(주변 참조 샘플 수집) 

단계 1에서는 현재 블록의 상단 및 좌측 인접 복원 샘플을 이용하여 템플릿(template) 영역을 구

성한다. 해당 템플릿 영역은 Sobel 필터를 적용하기 위한 영역으로 정의되며, 현재 블록 주변의 

공간적 구조와 방향성 정보를 반영하기 위한 입력 데이터로 사용된다. 이 과정에서 기본적으로 

상단 및 좌측 인접 참조 영역이 사용되며, 우상단 및 좌하단 참조 영역은 복원된 샘플이 존재하

는 경우에 한해 추가적으로 활용된다. 참조 샘플의 가용 여부에 따라 HoG 구성에 포함되는 영역

이 결정되며, 이를 통해 주변 참조 정보의 유효한 범위 내에서 방향성 통계가 안정적으로 구성되

도록 한다. 그림 2에서 현재 블록 주변 템플릿 영역은 HoG 구성을 위한 템플릿 영역을 의미한다. 

 

단계 2. Sobel 기반 기울기 계산 및 HoG 구성 

구성된 템플릿 영역에 대해 수평/수직 방향 Sobel 필터를 적용하여 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 및 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 기울기 성분을 

계산한다. 이후 각 IPM 방향에 대한 기여도를 누적하여 HoG를 구성하며, 기울기 크기(또는 

amplitude)는 연산 복잡도를 고려하여 다음과 같이 정의할 수 있다. 
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐺𝐺𝐺𝐺 =∣ 𝐺𝐺𝐺𝐺𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 ∣ +∣ 𝐺𝐺𝐺𝐺𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻 ∣ 

HoG가 구성되면, IPM별 amplitude 값을 기준으로 예측 후보 모드들을 내림차순 정렬한다. 그림 2

는 인접 템플릿을 사용하여 HoG을 구성하는 과정을 도식화한 것이다. 

 

 
그림 2. DIMD 모드에서의 HoG를 구성하는 과정 

 

단계 3. 상위 IPM 예측자 및 planar 예측자의 가중 결합 

단계 3에서는 단계 2에서 구성된 HoG의 amplitude가 가장 큰 상위 다섯 개의 IPM으로부터 생성

된 예측자(𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖, 𝑎𝑎𝑎𝑎 = 1, … ,5)와 planar 모드 또는 BV 정보를 사용하여 생성된 예측자(𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻𝐻𝐻/𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉)

<그림 2> DIMD 모드에서의 HoG를 구성하는 과정

를 생성하는 방식으로 구분될 수 있으며, 각 방식은 예측 정확도, 신호화 오버헤드, 그리고 계산 

복잡도 측면에서 상이한 특성을 가진다. 

 

1. Decoder-side intra mode derivation (DIMD) 기술 

DIMD 기술은 복호화기에서 현재 블록 주변의 복원 샘플을 분석하여 인트라 예측자를 직접 유도

하는 인트라 예측 기술로, 인트라 예측 모드에 대한 명시적인 시그널링 없이도 효율적인 예측을 

가능하게 한다 [5]. DIMD는 Sobel 필터 기반의 기울기 분석을 통해 IPM(Intra Prediction Mode)별 

통계 정보를 생성하고, 해당 통계에서 두드러진 방향에 대응되는 다수의 예측자와 planar 예측자

를 가중 결합하여 최종 예측자를 생성한다. DIMD의 전체 동작 과정은 다음과 같이 세 단계로 구

성된다. 

 

단계 1. 템플릿 영역 구성(주변 참조 샘플 수집) 

단계 1에서는 현재 블록의 상단 및 좌측 인접 복원 샘플을 이용하여 템플릿(template) 영역을 구

성한다. 해당 템플릿 영역은 Sobel 필터를 적용하기 위한 영역으로 정의되며, 현재 블록 주변의 

공간적 구조와 방향성 정보를 반영하기 위한 입력 데이터로 사용된다. 이 과정에서 기본적으로 

상단 및 좌측 인접 참조 영역이 사용되며, 우상단 및 좌하단 참조 영역은 복원된 샘플이 존재하

는 경우에 한해 추가적으로 활용된다. 참조 샘플의 가용 여부에 따라 HoG 구성에 포함되는 영역

이 결정되며, 이를 통해 주변 참조 정보의 유효한 범위 내에서 방향성 통계가 안정적으로 구성되

도록 한다. 그림 2에서 현재 블록 주변 템플릿 영역은 HoG 구성을 위한 템플릿 영역을 의미한다. 

 

단계 2. Sobel 기반 기울기 계산 및 HoG 구성 

구성된 템플릿 영역에 대해 수평/수직 방향 Sobel 필터를 적용하여 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 및 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 기울기 성분을 

계산한다. 이후 각 IPM 방향에 대한 기여도를 누적하여 HoG를 구성하며, 기울기 크기(또는 

amplitude)는 연산 복잡도를 고려하여 다음과 같이 정의할 수 있다. 
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측자 중 하나로 결정된다. 구체적으로, 단계 1에서 정의한 reference template 영역을 대상으로 각 

예측자를 생성한 후, reference template 내의 복원된 샘플과의 SATD (sum of absolute transform 

difference) 비용을 계산한다. 두 예측자에 대한 SATD 비용을 비교하여, 더 낮은 비용을 갖는 예측

자를 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻𝐻𝐻/𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉로 선택한다. DIMD 모드는 VTM-11.0을 기준으로 Y, Cb, Cr 채널에서 각각 -

0.45%, -0.26%, -0.30%의 BDBR 이득을 보였다. 인코딩 시간과 디코딩 시간의 경우 113%와 110%

로 측정되었다. 

 

2. Occurrence based Intra Coding (OBIC) 기술 

OBIC 기술은 현재 블록 주변에 위치한 블록들에서 예측에 사용된 인트라 예측 모드들의 발생 빈

도를 Histogram of Occurrence(HoC) 형태로 분석하여, 복수 개의 방향성 인트라 예측자를 유도하

고 이를 가중 결합함으로써 최종 예측자를 생성하는 화면 내 예측 기술이다 [6]. OBIC의 전체 동

작 과정은 다음과 같은 단계로 구성된다. 

 

단계 1. 인접 및 비인접 후보 블록 수집 

단계 1에서는 현재 블록 주변의 인접(adjacent) 후보와 비인접(non-adjacent) 후보로 OBIC 후보 

리스트를 구성한다. 현재 블록에 대한 인접 후보 블록의 위치는 그림 3에 도시된 바와 같이 총 

13개의 위치에서 획득되며, 비인접 후보 블록은 그림 4에 도시된 바와 와 같이 총 18개의 위치에

서 획득된다. 이를 통하여 최대 31개의 후보 블록으로 OBIC 후보 리스트가 구성된다. 

 

 
그림 3 OBIC 모드에서의 인접 후보 위치 
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그림 4. OBIC 후보에서의 비인접 후보 위치와 비인접 후보 위치에 따른 weight 값 
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⋅ 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 + 𝑤𝑤𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻𝐻𝐻/𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉 ⋅ 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻𝐻𝐻/𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉 (1) 

이때 각 방향성 예측자에 대한 가중치 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖는 해당 방향성 모드의 HoG amplitude에 비례하도록 설

정하여, 전체 가중치 합이 48/64가 되도록 한다. 반면, 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻𝐻𝐻/𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉에 대한 가중치 𝑤𝑤𝑤𝑤planar/BV는 

16/64로 설정한다. 여기서 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻𝐻𝐻/𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉는 planar 모드와 BV 정보를 이용하여 각각 생성된 두 예

측자 중 하나로 결정된다. 구체적으로, 단계 1에서 정의한 reference template 영역을 대상으로 각 

예측자를 생성한 후, reference template 내의 복원된 샘플과의 SATD (sum of absolute transform 

difference) 비용을 계산한다. 두 예측자에 대한 SATD 비용을 비교하여, 더 낮은 비용을 갖는 예측

자를 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻𝐻𝐻/𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉로 선택한다. DIMD 모드는 VTM-11.0을 기준으로 Y, Cb, Cr 채널에서 각각 -

0.45%, -0.26%, -0.30%의 BDBR 이득을 보였다. 인코딩 시간과 디코딩 시간의 경우 113%와 110%

로 측정되었다. 

 

2. Occurrence based Intra Coding (OBIC) 기술 

OBIC 기술은 현재 블록 주변에 위치한 블록들에서 예측에 사용된 인트라 예측 모드들의 발생 빈

도를 Histogram of Occurrence(HoC) 형태로 분석하여, 복수 개의 방향성 인트라 예측자를 유도하

고 이를 가중 결합함으로써 최종 예측자를 생성하는 화면 내 예측 기술이다 [6]. OBIC의 전체 동

작 과정은 다음과 같은 단계로 구성된다. 

 

단계 1. 인접 및 비인접 후보 블록 수집 

단계 1에서는 현재 블록 주변의 인접(adjacent) 후보와 비인접(non-adjacent) 후보로 OBIC 후보 

리스트를 구성한다. 현재 블록에 대한 인접 후보 블록의 위치는 그림 3에 도시된 바와 같이 총 

13개의 위치에서 획득되며, 비인접 후보 블록은 그림 4에 도시된 바와 와 같이 총 18개의 위치에

서 획득된다. 이를 통하여 최대 31개의 후보 블록으로 OBIC 후보 리스트가 구성된다. 

 

 
그림 3 OBIC 모드에서의 인접 후보 위치 

 

를 가중 결합하여 최종 예측자를 생

성한다. Planar 모드와 BV 기반 예측자에 대해서는 현재 

블록의 reference template 영역을 대상으로 각각 예측

자를 생성한 후, reference template 내 복원된 샘플과의 

SATD (sum of absolute transformed differences) 비용

을 계산한다. 두 예측자 중 더 낮은 SATD 비용을 갖는 예

측자가 

를 가중합하여 최종 예측자를 생성한다. 최종 예측자(𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷)는 아래 식 1과 같이 표현된다. 
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⋅ 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 + 𝑤𝑤𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻𝐻𝐻/𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉 ⋅ 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻𝐻𝐻/𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉 (1) 

이때 각 방향성 예측자에 대한 가중치 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖는 해당 방향성 모드의 HoG amplitude에 비례하도록 설

정하여, 전체 가중치 합이 48/64가 되도록 한다. 반면, 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻𝐻𝐻/𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉에 대한 가중치 𝑤𝑤𝑤𝑤planar/BV는 

16/64로 설정한다. 여기서 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻𝐻𝐻/𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉는 planar 모드와 BV 정보를 이용하여 각각 생성된 두 예

측자 중 하나로 결정된다. 구체적으로, 단계 1에서 정의한 reference template 영역을 대상으로 각 

예측자를 생성한 후, reference template 내의 복원된 샘플과의 SATD (sum of absolute transform 

difference) 비용을 계산한다. 두 예측자에 대한 SATD 비용을 비교하여, 더 낮은 비용을 갖는 예측

자를 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻𝐻𝐻/𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉로 선택한다. DIMD 모드는 VTM-11.0을 기준으로 Y, Cb, Cr 채널에서 각각 -

0.45%, -0.26%, -0.30%의 BDBR 이득을 보였다. 인코딩 시간과 디코딩 시간의 경우 113%와 110%

로 측정되었다. 

 

2. Occurrence based Intra Coding (OBIC) 기술 

OBIC 기술은 현재 블록 주변에 위치한 블록들에서 예측에 사용된 인트라 예측 모드들의 발생 빈

도를 Histogram of Occurrence(HoC) 형태로 분석하여, 복수 개의 방향성 인트라 예측자를 유도하

고 이를 가중 결합함으로써 최종 예측자를 생성하는 화면 내 예측 기술이다 [6]. OBIC의 전체 동

작 과정은 다음과 같은 단계로 구성된다. 

 

단계 1. 인접 및 비인접 후보 블록 수집 

단계 1에서는 현재 블록 주변의 인접(adjacent) 후보와 비인접(non-adjacent) 후보로 OBIC 후보 

리스트를 구성한다. 현재 블록에 대한 인접 후보 블록의 위치는 그림 3에 도시된 바와 같이 총 

13개의 위치에서 획득되며, 비인접 후보 블록은 그림 4에 도시된 바와 와 같이 총 18개의 위치에

서 획득된다. 이를 통하여 최대 31개의 후보 블록으로 OBIC 후보 리스트가 구성된다. 

 

 
그림 3 OBIC 모드에서의 인접 후보 위치 

 

로 선택된다. 최종 예측자는 다음

과 같이 표현된다.

여기서 
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∗ 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 + 𝑤𝑤𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻𝐻𝐻/𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉 ∗ 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻𝐻𝐻/𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉 (2) 

여기서 𝑤𝑤𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻𝐻𝐻/𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉는 16/64의 고정 가중치를 사용하며, 방향성 예측자에 대한 가중치 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖는 HoC 

크기에 비례하도록 설정한 후 전체 합이 48/64가 되도록 한다. OBIC 모드는 ECM-12.0을 기준으

로 Y, Cb, Cr 채널에서 각각 -0.10%, -0.04%, -0.04%의 BDBR 이득을 보였다. 인코딩 시간과 디코딩 

시간의 경우 100.5%와 99.2%로 측정되었다. 

 

3. Template-based Intra Mode Derivation (TIMD) 기술 

TIMD 모드는 복호화기에서 현재 블록 주변의 복원된 샘플을 이용하여 현재 블록 예측에 사용할 

IPM을 결정하는 화면 내 예측 기술이다 [7]. TIMD 모드는 IPM에 대한 명시적인 시그널링 없이, 

템플릿 영역에서의 템플릿 비용을 기준으로 최적의 인트라 예측 모드를 선정함으로써 화면 내 예

측을 수행한다. TIMD의 전체 동작 과정은 다음과 같이 구성된다. 

 

단계 1. 템플릿 영역 구성 

TIMD 모드에서는 그림 5와 같이 현재 블록의 상단 및 좌측에 위치한 복원된 샘플을 이용하여 템

플릿 영역 (template area)과 템플릿의 참조 영역 (reference area of template)을 구성한다. 템플릿

의 두께는 현재 블록의 크기에 따라 적응적으로 결정된다. 현재 블록의 너비 또는 높이가 8보다 

큰 경우에는 좌측 또는 상단 템플릿의 두께를 4로 설정하고, 그렇지 않은 경우에는 템플릿의 두

께를 2로 설정한다. 

 
그림 5. TIMD 모드의 대표도 

 

단계 2. 템플릿 기반 SATD 계산 및 최적 모드 선정 

단계 2에서는 MPM 리스트에 포함된 IPM들을 대상으로, 템플릿 참조 영역을 기반으로 템플릿 영

역에 대한 예측자를 생성한다. 이후 생성된 예측자와 템플릿 영역의 복원 샘플 간의 SATD 비용을 

계산한다. 계산된 SATD 비용을 기준으로 가장 작은 비용을 갖는 상위 하나 또는 두 개의 IPM을 

선정한다. 구체적으로, 두 번째로 작은 SATD 비용이 가장 작은 SATD 비용보다 두 배보다 크지 

않은 경우에는 두 개의 IPM을 선정하며, 그 외의 경우에는 하나의 IPM만을 선정한다. 

 

단계 3. 예측자 생성 및 가중 결합 

최종 예측자는 다음과 같이 생성된다. 템플릿 영역에서의 SATD 비용을 기준으로 하나의 IPM만 

선정된 경우, 해당 IPM으로 생성된 예측자를 최종 예측자로 사용한다. 반면, 두 개의 IPM이 선정

는 16/64의 고정 가중치를 사용하며, 

방향성 예측자에 대한 가중치 
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크기에 비례하도록 설정한 후 전체 합이 48/64가 되도록 한다. OBIC 모드는 ECM-12.0을 기준으

로 Y, Cb, Cr 채널에서 각각 -0.10%, -0.04%, -0.04%의 BDBR 이득을 보였다. 인코딩 시간과 디코딩 

시간의 경우 100.5%와 99.2%로 측정되었다. 

 

3. Template-based Intra Mode Derivation (TIMD) 기술 

TIMD 모드는 복호화기에서 현재 블록 주변의 복원된 샘플을 이용하여 현재 블록 예측에 사용할 

IPM을 결정하는 화면 내 예측 기술이다 [7]. TIMD 모드는 IPM에 대한 명시적인 시그널링 없이, 

템플릿 영역에서의 템플릿 비용을 기준으로 최적의 인트라 예측 모드를 선정함으로써 화면 내 예

측을 수행한다. TIMD의 전체 동작 과정은 다음과 같이 구성된다. 

 

단계 1. 템플릿 영역 구성 

TIMD 모드에서는 그림 5와 같이 현재 블록의 상단 및 좌측에 위치한 복원된 샘플을 이용하여 템

플릿 영역 (template area)과 템플릿의 참조 영역 (reference area of template)을 구성한다. 템플릿

의 두께는 현재 블록의 크기에 따라 적응적으로 결정된다. 현재 블록의 너비 또는 높이가 8보다 

큰 경우에는 좌측 또는 상단 템플릿의 두께를 4로 설정하고, 그렇지 않은 경우에는 템플릿의 두

께를 2로 설정한다. 

 
그림 5. TIMD 모드의 대표도 

 

단계 2. 템플릿 기반 SATD 계산 및 최적 모드 선정 

단계 2에서는 MPM 리스트에 포함된 IPM들을 대상으로, 템플릿 참조 영역을 기반으로 템플릿 영
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선정한다. 구체적으로, 두 번째로 작은 SATD 비용이 가장 작은 SATD 비용보다 두 배보다 크지 

않은 경우에는 두 개의 IPM을 선정하며, 그 외의 경우에는 하나의 IPM만을 선정한다. 

 

단계 3. 예측자 생성 및 가중 결합 

최종 예측자는 다음과 같이 생성된다. 템플릿 영역에서의 SATD 비용을 기준으로 하나의 IPM만 
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선정된 경우, 해당 IPM으로 생성된 예측자를 최종 예측자로 사용한다. 반면, 두 개의 IPM이 선정

𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝑂𝑂𝑂𝑂𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑂𝑂𝑂𝑂 = �𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖

5

𝑖𝑖𝑖𝑖=1

∗ 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 + 𝑤𝑤𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻𝐻𝐻/𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉 ∗ 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻𝐻𝐻/𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉 (2) 

여기서 𝑤𝑤𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐻𝐻𝐻𝐻/𝐵𝐵𝐵𝐵𝑉𝑉𝑉𝑉는 16/64의 고정 가중치를 사용하며, 방향성 예측자에 대한 가중치 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖는 HoC 

크기에 비례하도록 설정한 후 전체 합이 48/64가 되도록 한다. OBIC 모드는 ECM-12.0을 기준으

로 Y, Cb, Cr 채널에서 각각 -0.10%, -0.04%, -0.04%의 BDBR 이득을 보였다. 인코딩 시간과 디코딩 

시간의 경우 100.5%와 99.2%로 측정되었다. 

 

3. Template-based Intra Mode Derivation (TIMD) 기술 

TIMD 모드는 복호화기에서 현재 블록 주변의 복원된 샘플을 이용하여 현재 블록 예측에 사용할 

IPM을 결정하는 화면 내 예측 기술이다 [7]. TIMD 모드는 IPM에 대한 명시적인 시그널링 없이, 

템플릿 영역에서의 템플릿 비용을 기준으로 최적의 인트라 예측 모드를 선정함으로써 화면 내 예

측을 수행한다. TIMD의 전체 동작 과정은 다음과 같이 구성된다. 

 

단계 1. 템플릿 영역 구성 

TIMD 모드에서는 그림 5와 같이 현재 블록의 상단 및 좌측에 위치한 복원된 샘플을 이용하여 템

플릿 영역 (template area)과 템플릿의 참조 영역 (reference area of template)을 구성한다. 템플릿

의 두께는 현재 블록의 크기에 따라 적응적으로 결정된다. 현재 블록의 너비 또는 높이가 8보다 

큰 경우에는 좌측 또는 상단 템플릿의 두께를 4로 설정하고, 그렇지 않은 경우에는 템플릿의 두

께를 2로 설정한다. 

 
그림 5. TIMD 모드의 대표도 

 

단계 2. 템플릿 기반 SATD 계산 및 최적 모드 선정 

단계 2에서는 MPM 리스트에 포함된 IPM들을 대상으로, 템플릿 참조 영역을 기반으로 템플릿 영

역에 대한 예측자를 생성한다. 이후 생성된 예측자와 템플릿 영역의 복원 샘플 간의 SATD 비용을 

계산한다. 계산된 SATD 비용을 기준으로 가장 작은 비용을 갖는 상위 하나 또는 두 개의 IPM을 

선정한다. 구체적으로, 두 번째로 작은 SATD 비용이 가장 작은 SATD 비용보다 두 배보다 크지 

않은 경우에는 두 개의 IPM을 선정하며, 그 외의 경우에는 하나의 IPM만을 선정한다. 

 

단계 3. 예측자 생성 및 가중 결합 

최종 예측자는 다음과 같이 생성된다. 템플릿 영역에서의 SATD 비용을 기준으로 하나의 IPM만 

선정된 경우, 해당 IPM으로 생성된 예측자를 최종 예측자로 사용한다. 반면, 두 개의 IPM이 선정

(2)
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측자를 생성한다. 이후 생성된 예측자와 템플릿 영역의 복

원 샘플 간의 SATD 비용을 계산한다. 계산된 SATD 비용

을 기준으로 가장 작은 비용을 갖는 상위 하나 또는 두 개

의 IPM을 선정한다. 구체적으로, 두 번째로 작은 SATD 비

용이 가장 작은 SATD 비용보다 두 배보다 크지 않은 경우

에는 두 개의 IPM을 선정하며, 그 외의 경우에는 하나의 

IPM만을 선정한다.

단계 3. 예측자 생성 및 가중 결합

최종 예측자는 다음과 같이 생성된다. 템플릿 영역에서

의 SATD 비용을 기준으로 하나의 IPM만 선정된 경우, 해

당 IPM으로 생성된 예측자를 최종 예측자로 사용한다. 반

면, 두 개의 IPM이 선정된 경우, 각 IPM으로부터 생성된 

현재 블록의 예측자를 SATD 비용에 기반한 가중치로 가

중합하여 최종 예측자를 생성한다. 두 예측자를 가중합하

는 경우의 최종 예측자는 식 (3)과 같이 표현된다.

여기서 

된 경우, 각 IPM으로부터 생성된 현재 블록의 예측자를 SATD 비용에 기반한 가중치로 가중합하

여 최종 예측자를 생성한다. 두 예측자를 가중합하는 경우의 최종 예측자는 식 (3)와 같이 표현된

다. 

𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝑇𝑇𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑤𝑤𝑤𝑤𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1 ∗ 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1 + 𝑤𝑤𝑤𝑤𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2 ∗ 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2, 𝑤𝑤𝑤𝑤𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1 =
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2
, 𝑤𝑤𝑤𝑤𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2 = 1 − 𝑤𝑤𝑤𝑤𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1(3) 

여기서 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1과 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2는 각각 템플릿 SATD 비용이 가장 작은 𝐼𝐼𝐼𝐼𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1과 두 번째로 작은 

𝐼𝐼𝐼𝐼𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2로부터 생성된 현재 블록 예측자를 의미한다. 𝑤𝑤𝑤𝑤𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1, 𝑤𝑤𝑤𝑤𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2은 각 IPM에 대한 가중치를 의미

하며, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1과 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2는 각 IPM에 대해 템플릿 영역에서 계산된 SATD 비용을 의미한다. 

TIMD 모드는 ECM-1.0을 기준으로 Y, Cb, Cr 채널에서 각각 -0.47%, -0.34%, -0.37%의 BDBR 이득

을 보였다. 인코딩 시간과 디코딩 시간의 경우 124%와 111%로 측정되었다. 

 

4. Most Dominant Intra Prediction (MDIP) 기술 

MDIP 모드는 복호화기에서 현재 블록 주변의 복원된 샘플로부터 계산된 HoG를 기반으로 MDIP 

후보 리스트를 구성하고, 구성된 후보들에 대해서 템플릿 매칭 비용을 이용하여 현재 블록 예측

에 사용할 IPM을 유도하는 화면 내 예측 기술이다 [10]. MDIP 모드는 블록 크기가 1024 이하인 

경우에 적용되며, 전체 동작 과정은 다음과 같다. 

 

단계 1. 템플릿 영역 구성 및 HoG 계산 

MDIP 모드에서는 그림 6와 같이 현재 블록의 상단 및 좌측에 위치한 복원된 샘플을 이용하여 템

플릿 영역(template area)을 구성하고, 해당 영역으로부터 HoG를 계산한다. HoG 계산 과정은 

DIMD와 동일한 방식으로 수행되나, 템플릿 영역의 구성은 블록 크기에 따라 달라진다. 

 

 
그림 6. MDIP 모드에서의 템플릿 영역 

 

현재 블록의 샘플 수가 256 미만인 경우에는 3-line 템플릿 영역을 사용하며, 256 이상인 경우에

는 그림 6에 도시된 바와 같이 4-line 템플릿 영역을 사용한다. 계산된 HoG는 각 인트라 예측 모

드에 대응되는 gradient amplitude 분포를 제공하며, 이후 후보 IPM 선별 과정에 활용된다. 

 

단계 2. HoG 기반 MDIP 후보 리스트 구성 

HoG 계산 결과를 기반으로 최대 8개의 IPM 후보를 도출한다. 구체적으로, 템플릿 영역별 HoG를 

이용하여 다음과 같이 후보 IPM을 구성한다. 우선 L-shape 형태인 상단 및 좌측 템플릿 영역으로

부터 HoG amplitude가 가장 높은 4개의 IPM을 MDIP 후보 리스트에 추가한다. 다음으로, 좌측 템

과 

된 경우, 각 IPM으로부터 생성된 현재 블록의 예측자를 SATD 비용에 기반한 가중치로 가중합하

여 최종 예측자를 생성한다. 두 예측자를 가중합하는 경우의 최종 예측자는 식 (3)와 같이 표현된

다. 

𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝑇𝑇𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑤𝑤𝑤𝑤𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1 ∗ 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1 + 𝑤𝑤𝑤𝑤𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2 ∗ 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2, 𝑤𝑤𝑤𝑤𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1 =
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2
, 𝑤𝑤𝑤𝑤𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2 = 1 − 𝑤𝑤𝑤𝑤𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1(3) 

여기서 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1과 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2는 각각 템플릿 SATD 비용이 가장 작은 𝐼𝐼𝐼𝐼𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1과 두 번째로 작은 

𝐼𝐼𝐼𝐼𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2로부터 생성된 현재 블록 예측자를 의미한다. 𝑤𝑤𝑤𝑤𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1, 𝑤𝑤𝑤𝑤𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2은 각 IPM에 대한 가중치를 의미

하며, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1과 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2는 각 IPM에 대해 템플릿 영역에서 계산된 SATD 비용을 의미한다. 

TIMD 모드는 ECM-1.0을 기준으로 Y, Cb, Cr 채널에서 각각 -0.47%, -0.34%, -0.37%의 BDBR 이득

을 보였다. 인코딩 시간과 디코딩 시간의 경우 124%와 111%로 측정되었다. 

 

4. Most Dominant Intra Prediction (MDIP) 기술 

MDIP 모드는 복호화기에서 현재 블록 주변의 복원된 샘플로부터 계산된 HoG를 기반으로 MDIP 

후보 리스트를 구성하고, 구성된 후보들에 대해서 템플릿 매칭 비용을 이용하여 현재 블록 예측

에 사용할 IPM을 유도하는 화면 내 예측 기술이다 [10]. MDIP 모드는 블록 크기가 1024 이하인 

경우에 적용되며, 전체 동작 과정은 다음과 같다. 

 

단계 1. 템플릿 영역 구성 및 HoG 계산 

MDIP 모드에서는 그림 6와 같이 현재 블록의 상단 및 좌측에 위치한 복원된 샘플을 이용하여 템

플릿 영역(template area)을 구성하고, 해당 영역으로부터 HoG를 계산한다. HoG 계산 과정은 

DIMD와 동일한 방식으로 수행되나, 템플릿 영역의 구성은 블록 크기에 따라 달라진다. 

 

 
그림 6. MDIP 모드에서의 템플릿 영역 

 

현재 블록의 샘플 수가 256 미만인 경우에는 3-line 템플릿 영역을 사용하며, 256 이상인 경우에

는 그림 6에 도시된 바와 같이 4-line 템플릿 영역을 사용한다. 계산된 HoG는 각 인트라 예측 모

드에 대응되는 gradient amplitude 분포를 제공하며, 이후 후보 IPM 선별 과정에 활용된다. 

 

단계 2. HoG 기반 MDIP 후보 리스트 구성 

HoG 계산 결과를 기반으로 최대 8개의 IPM 후보를 도출한다. 구체적으로, 템플릿 영역별 HoG를 

이용하여 다음과 같이 후보 IPM을 구성한다. 우선 L-shape 형태인 상단 및 좌측 템플릿 영역으로

부터 HoG amplitude가 가장 높은 4개의 IPM을 MDIP 후보 리스트에 추가한다. 다음으로, 좌측 템

는 각각 템플릿 SATD 

비용이 가장 작은 

된 경우, 각 IPM으로부터 생성된 현재 블록의 예측자를 SATD 비용에 기반한 가중치로 가중합하

여 최종 예측자를 생성한다. 두 예측자를 가중합하는 경우의 최종 예측자는 식 (3)와 같이 표현된

다. 

𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝑇𝑇𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑤𝑤𝑤𝑤𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1 ∗ 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1 + 𝑤𝑤𝑤𝑤𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2 ∗ 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2, 𝑤𝑤𝑤𝑤𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1 =
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2
, 𝑤𝑤𝑤𝑤𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2 = 1 − 𝑤𝑤𝑤𝑤𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1(3) 

여기서 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1과 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2는 각각 템플릿 SATD 비용이 가장 작은 𝐼𝐼𝐼𝐼𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1과 두 번째로 작은 

𝐼𝐼𝐼𝐼𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2로부터 생성된 현재 블록 예측자를 의미한다. 𝑤𝑤𝑤𝑤𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1, 𝑤𝑤𝑤𝑤𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2은 각 IPM에 대한 가중치를 의미

하며, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1과 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2는 각 IPM에 대해 템플릿 영역에서 계산된 SATD 비용을 의미한다. 

TIMD 모드는 ECM-1.0을 기준으로 Y, Cb, Cr 채널에서 각각 -0.47%, -0.34%, -0.37%의 BDBR 이득

을 보였다. 인코딩 시간과 디코딩 시간의 경우 124%와 111%로 측정되었다. 

 

4. Most Dominant Intra Prediction (MDIP) 기술 

MDIP 모드는 복호화기에서 현재 블록 주변의 복원된 샘플로부터 계산된 HoG를 기반으로 MDIP 

후보 리스트를 구성하고, 구성된 후보들에 대해서 템플릿 매칭 비용을 이용하여 현재 블록 예측

에 사용할 IPM을 유도하는 화면 내 예측 기술이다 [10]. MDIP 모드는 블록 크기가 1024 이하인 

경우에 적용되며, 전체 동작 과정은 다음과 같다. 

 

단계 1. 템플릿 영역 구성 및 HoG 계산 

MDIP 모드에서는 그림 6와 같이 현재 블록의 상단 및 좌측에 위치한 복원된 샘플을 이용하여 템

플릿 영역(template area)을 구성하고, 해당 영역으로부터 HoG를 계산한다. HoG 계산 과정은 

DIMD와 동일한 방식으로 수행되나, 템플릿 영역의 구성은 블록 크기에 따라 달라진다. 

 

 
그림 6. MDIP 모드에서의 템플릿 영역 

 

현재 블록의 샘플 수가 256 미만인 경우에는 3-line 템플릿 영역을 사용하며, 256 이상인 경우에

는 그림 6에 도시된 바와 같이 4-line 템플릿 영역을 사용한다. 계산된 HoG는 각 인트라 예측 모

드에 대응되는 gradient amplitude 분포를 제공하며, 이후 후보 IPM 선별 과정에 활용된다. 

 

단계 2. HoG 기반 MDIP 후보 리스트 구성 

HoG 계산 결과를 기반으로 최대 8개의 IPM 후보를 도출한다. 구체적으로, 템플릿 영역별 HoG를 

이용하여 다음과 같이 후보 IPM을 구성한다. 우선 L-shape 형태인 상단 및 좌측 템플릿 영역으로

부터 HoG amplitude가 가장 높은 4개의 IPM을 MDIP 후보 리스트에 추가한다. 다음으로, 좌측 템

1과 두 번째로 작은 

된 경우, 각 IPM으로부터 생성된 현재 블록의 예측자를 SATD 비용에 기반한 가중치로 가중합하

여 최종 예측자를 생성한다. 두 예측자를 가중합하는 경우의 최종 예측자는 식 (3)와 같이 표현된

다. 

𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝑇𝑇𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑤𝑤𝑤𝑤𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1 ∗ 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1 + 𝑤𝑤𝑤𝑤𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2 ∗ 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2, 𝑤𝑤𝑤𝑤𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1 =
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2
, 𝑤𝑤𝑤𝑤𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2 = 1 − 𝑤𝑤𝑤𝑤𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1(3) 

여기서 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1과 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2는 각각 템플릿 SATD 비용이 가장 작은 𝐼𝐼𝐼𝐼𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1과 두 번째로 작은 

𝐼𝐼𝐼𝐼𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2로부터 생성된 현재 블록 예측자를 의미한다. 𝑤𝑤𝑤𝑤𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1, 𝑤𝑤𝑤𝑤𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2은 각 IPM에 대한 가중치를 의미

하며, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1과 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2는 각 IPM에 대해 템플릿 영역에서 계산된 SATD 비용을 의미한다. 

TIMD 모드는 ECM-1.0을 기준으로 Y, Cb, Cr 채널에서 각각 -0.47%, -0.34%, -0.37%의 BDBR 이득

을 보였다. 인코딩 시간과 디코딩 시간의 경우 124%와 111%로 측정되었다. 

 

4. Most Dominant Intra Prediction (MDIP) 기술 

MDIP 모드는 복호화기에서 현재 블록 주변의 복원된 샘플로부터 계산된 HoG를 기반으로 MDIP 

후보 리스트를 구성하고, 구성된 후보들에 대해서 템플릿 매칭 비용을 이용하여 현재 블록 예측

에 사용할 IPM을 유도하는 화면 내 예측 기술이다 [10]. MDIP 모드는 블록 크기가 1024 이하인 

경우에 적용되며, 전체 동작 과정은 다음과 같다. 

 

단계 1. 템플릿 영역 구성 및 HoG 계산 

MDIP 모드에서는 그림 6와 같이 현재 블록의 상단 및 좌측에 위치한 복원된 샘플을 이용하여 템

플릿 영역(template area)을 구성하고, 해당 영역으로부터 HoG를 계산한다. HoG 계산 과정은 

DIMD와 동일한 방식으로 수행되나, 템플릿 영역의 구성은 블록 크기에 따라 달라진다. 

 

 
그림 6. MDIP 모드에서의 템플릿 영역 

 

현재 블록의 샘플 수가 256 미만인 경우에는 3-line 템플릿 영역을 사용하며, 256 이상인 경우에

는 그림 6에 도시된 바와 같이 4-line 템플릿 영역을 사용한다. 계산된 HoG는 각 인트라 예측 모

드에 대응되는 gradient amplitude 분포를 제공하며, 이후 후보 IPM 선별 과정에 활용된다. 
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된 경우, 각 IPM으로부터 생성된 현재 블록의 예측자를 SATD 비용에 기반한 가중치로 가중합하
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𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2
, 𝑤𝑤𝑤𝑤𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2 = 1 − 𝑤𝑤𝑤𝑤𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1(3) 

여기서 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1과 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2는 각각 템플릿 SATD 비용이 가장 작은 𝐼𝐼𝐼𝐼𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1과 두 번째로 작은 

𝐼𝐼𝐼𝐼𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2로부터 생성된 현재 블록 예측자를 의미한다. 𝑤𝑤𝑤𝑤𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1, 𝑤𝑤𝑤𝑤𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2은 각 IPM에 대한 가중치를 의미

하며, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1과 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2는 각 IPM에 대해 템플릿 영역에서 계산된 SATD 비용을 의미한다. 

TIMD 모드는 ECM-1.0을 기준으로 Y, Cb, Cr 채널에서 각각 -0.47%, -0.34%, -0.37%의 BDBR 이득

을 보였다. 인코딩 시간과 디코딩 시간의 경우 124%와 111%로 측정되었다. 

 

4. Most Dominant Intra Prediction (MDIP) 기술 

MDIP 모드는 복호화기에서 현재 블록 주변의 복원된 샘플로부터 계산된 HoG를 기반으로 MDIP 

후보 리스트를 구성하고, 구성된 후보들에 대해서 템플릿 매칭 비용을 이용하여 현재 블록 예측

에 사용할 IPM을 유도하는 화면 내 예측 기술이다 [10]. MDIP 모드는 블록 크기가 1024 이하인 

경우에 적용되며, 전체 동작 과정은 다음과 같다. 

 

단계 1. 템플릿 영역 구성 및 HoG 계산 

MDIP 모드에서는 그림 6와 같이 현재 블록의 상단 및 좌측에 위치한 복원된 샘플을 이용하여 템

플릿 영역(template area)을 구성하고, 해당 영역으로부터 HoG를 계산한다. HoG 계산 과정은 

DIMD와 동일한 방식으로 수행되나, 템플릿 영역의 구성은 블록 크기에 따라 달라진다. 

 

 
그림 6. MDIP 모드에서의 템플릿 영역 

 

현재 블록의 샘플 수가 256 미만인 경우에는 3-line 템플릿 영역을 사용하며, 256 이상인 경우에

는 그림 6에 도시된 바와 같이 4-line 템플릿 영역을 사용한다. 계산된 HoG는 각 인트라 예측 모

드에 대응되는 gradient amplitude 분포를 제공하며, 이후 후보 IPM 선별 과정에 활용된다. 

 

단계 2. HoG 기반 MDIP 후보 리스트 구성 

HoG 계산 결과를 기반으로 최대 8개의 IPM 후보를 도출한다. 구체적으로, 템플릿 영역별 HoG를 

이용하여 다음과 같이 후보 IPM을 구성한다. 우선 L-shape 형태인 상단 및 좌측 템플릿 영역으로

부터 HoG amplitude가 가장 높은 4개의 IPM을 MDIP 후보 리스트에 추가한다. 다음으로, 좌측 템

과 

된 경우, 각 IPM으로부터 생성된 현재 블록의 예측자를 SATD 비용에 기반한 가중치로 가중합하

여 최종 예측자를 생성한다. 두 예측자를 가중합하는 경우의 최종 예측자는 식 (3)와 같이 표현된

다. 

𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝑇𝑇𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑤𝑤𝑤𝑤𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1 ∗ 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1 + 𝑤𝑤𝑤𝑤𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2 ∗ 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2, 𝑤𝑤𝑤𝑤𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1 =
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2
, 𝑤𝑤𝑤𝑤𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2 = 1 − 𝑤𝑤𝑤𝑤𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1(3) 

여기서 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1과 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2는 각각 템플릿 SATD 비용이 가장 작은 𝐼𝐼𝐼𝐼𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1과 두 번째로 작은 

𝐼𝐼𝐼𝐼𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2로부터 생성된 현재 블록 예측자를 의미한다. 𝑤𝑤𝑤𝑤𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1, 𝑤𝑤𝑤𝑤𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2은 각 IPM에 대한 가중치를 의미

하며, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1과 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2는 각 IPM에 대해 템플릿 영역에서 계산된 SATD 비용을 의미한다. 

TIMD 모드는 ECM-1.0을 기준으로 Y, Cb, Cr 채널에서 각각 -0.47%, -0.34%, -0.37%의 BDBR 이득

을 보였다. 인코딩 시간과 디코딩 시간의 경우 124%와 111%로 측정되었다. 

 

4. Most Dominant Intra Prediction (MDIP) 기술 

MDIP 모드는 복호화기에서 현재 블록 주변의 복원된 샘플로부터 계산된 HoG를 기반으로 MDIP 

후보 리스트를 구성하고, 구성된 후보들에 대해서 템플릿 매칭 비용을 이용하여 현재 블록 예측

에 사용할 IPM을 유도하는 화면 내 예측 기술이다 [10]. MDIP 모드는 블록 크기가 1024 이하인 

경우에 적용되며, 전체 동작 과정은 다음과 같다. 

 

단계 1. 템플릿 영역 구성 및 HoG 계산 

MDIP 모드에서는 그림 6와 같이 현재 블록의 상단 및 좌측에 위치한 복원된 샘플을 이용하여 템

플릿 영역(template area)을 구성하고, 해당 영역으로부터 HoG를 계산한다. HoG 계산 과정은 

DIMD와 동일한 방식으로 수행되나, 템플릿 영역의 구성은 블록 크기에 따라 달라진다. 

 

 
그림 6. MDIP 모드에서의 템플릿 영역 

 

현재 블록의 샘플 수가 256 미만인 경우에는 3-line 템플릿 영역을 사용하며, 256 이상인 경우에

는 그림 6에 도시된 바와 같이 4-line 템플릿 영역을 사용한다. 계산된 HoG는 각 인트라 예측 모

드에 대응되는 gradient amplitude 분포를 제공하며, 이후 후보 IPM 선별 과정에 활용된다. 

 

단계 2. HoG 기반 MDIP 후보 리스트 구성 

HoG 계산 결과를 기반으로 최대 8개의 IPM 후보를 도출한다. 구체적으로, 템플릿 영역별 HoG를 

이용하여 다음과 같이 후보 IPM을 구성한다. 우선 L-shape 형태인 상단 및 좌측 템플릿 영역으로

부터 HoG amplitude가 가장 높은 4개의 IPM을 MDIP 후보 리스트에 추가한다. 다음으로, 좌측 템

는 각 IPM에 대해 템플릿 영역에서 계산된 

SATD 비용을 의미한다. TIMD 모드는 ECM-1.0을 기준

으로 Y, Cb, Cr 채널에서 각각 -0.47%, -0.34%, -0.37%의 

BDBR 성능을 보였다. 인코딩 시간과 디코딩 시간의 경우 

124%와 111%로 측정되었다.

4. �Most Dominant Intra Prediction 
(MDIP) 기술

MDIP 모드는 복호화기에서 현재 블록 주변의 복원된 

샘플로부터 계산된 HoG를 기반으로 MDIP 후보 리스트

를 구성하고, 구성된 후보들에 대해서 템플릿 매칭 비용

을 이용하여 현재 블록 예측에 사용할 IPM을 유도하는 화

면 내 예측 기술이다[10]. MDIP 모드는 블록 크기가 1024 

이하인 경우에 적용되며, 전체 동작 과정은 다음과 같다.

단계 1. 템플릿 영역 구성 및 HoG 계산

MDIP 모드에서는 <그림 6>과 같이 현재 블록의 상단 

된 경우, 각 IPM으로부터 생성된 현재 블록의 예측자를 SATD 비용에 기반한 가중치로 가중합하

여 최종 예측자를 생성한다. 두 예측자를 가중합하는 경우의 최종 예측자는 식 (3)와 같이 표현된

다. 

𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝑇𝑇𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑤𝑤𝑤𝑤𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1 ∗ 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1 + 𝑤𝑤𝑤𝑤𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2 ∗ 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2, 𝑤𝑤𝑤𝑤𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1 =
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2
, 𝑤𝑤𝑤𝑤𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2 = 1 − 𝑤𝑤𝑤𝑤𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1(3) 

여기서 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1과 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2는 각각 템플릿 SATD 비용이 가장 작은 𝐼𝐼𝐼𝐼𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1과 두 번째로 작은 

𝐼𝐼𝐼𝐼𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2로부터 생성된 현재 블록 예측자를 의미한다. 𝑤𝑤𝑤𝑤𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1, 𝑤𝑤𝑤𝑤𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2은 각 IPM에 대한 가중치를 의미

하며, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1과 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2는 각 IPM에 대해 템플릿 영역에서 계산된 SATD 비용을 의미한다. 

TIMD 모드는 ECM-1.0을 기준으로 Y, Cb, Cr 채널에서 각각 -0.47%, -0.34%, -0.37%의 BDBR 이득

을 보였다. 인코딩 시간과 디코딩 시간의 경우 124%와 111%로 측정되었다. 

 

4. Most Dominant Intra Prediction (MDIP) 기술 

MDIP 모드는 복호화기에서 현재 블록 주변의 복원된 샘플로부터 계산된 HoG를 기반으로 MDIP 

후보 리스트를 구성하고, 구성된 후보들에 대해서 템플릿 매칭 비용을 이용하여 현재 블록 예측

에 사용할 IPM을 유도하는 화면 내 예측 기술이다 [10]. MDIP 모드는 블록 크기가 1024 이하인 

경우에 적용되며, 전체 동작 과정은 다음과 같다. 

 

단계 1. 템플릿 영역 구성 및 HoG 계산 

MDIP 모드에서는 그림 6와 같이 현재 블록의 상단 및 좌측에 위치한 복원된 샘플을 이용하여 템

플릿 영역(template area)을 구성하고, 해당 영역으로부터 HoG를 계산한다. HoG 계산 과정은 

DIMD와 동일한 방식으로 수행되나, 템플릿 영역의 구성은 블록 크기에 따라 달라진다. 

 

 
그림 6. MDIP 모드에서의 템플릿 영역 

 

현재 블록의 샘플 수가 256 미만인 경우에는 3-line 템플릿 영역을 사용하며, 256 이상인 경우에

는 그림 6에 도시된 바와 같이 4-line 템플릿 영역을 사용한다. 계산된 HoG는 각 인트라 예측 모

드에 대응되는 gradient amplitude 분포를 제공하며, 이후 후보 IPM 선별 과정에 활용된다. 

 

단계 2. HoG 기반 MDIP 후보 리스트 구성 

HoG 계산 결과를 기반으로 최대 8개의 IPM 후보를 도출한다. 구체적으로, 템플릿 영역별 HoG를 

이용하여 다음과 같이 후보 IPM을 구성한다. 우선 L-shape 형태인 상단 및 좌측 템플릿 영역으로

부터 HoG amplitude가 가장 높은 4개의 IPM을 MDIP 후보 리스트에 추가한다. 다음으로, 좌측 템

<그림 6> MDIP 모드에서의 템플릿 영역

된 경우, 각 IPM으로부터 생성된 현재 블록의 예측자를 SATD 비용에 기반한 가중치로 가중합하

여 최종 예측자를 생성한다. 두 예측자를 가중합하는 경우의 최종 예측자는 식 (3)와 같이 표현된

다. 

𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝑇𝑇𝑇𝑇𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑤𝑤𝑤𝑤𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1 ∗ 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1 + 𝑤𝑤𝑤𝑤𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2 ∗ 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2, 𝑤𝑤𝑤𝑤𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1 =
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2
, 𝑤𝑤𝑤𝑤𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2 = 1 − 𝑤𝑤𝑤𝑤𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1(3) 

여기서 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1과 𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2는 각각 템플릿 SATD 비용이 가장 작은 𝐼𝐼𝐼𝐼𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼1과 두 번째로 작은 

𝐼𝐼𝐼𝐼𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼2로부터 생성된 현재 블록 예측자를 의미한다. 𝑤𝑤𝑤𝑤𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1, 𝑤𝑤𝑤𝑤𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2은 각 IPM에 대한 가중치를 의미

하며, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷1과 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷2는 각 IPM에 대해 템플릿 영역에서 계산된 SATD 비용을 의미한다. 

TIMD 모드는 ECM-1.0을 기준으로 Y, Cb, Cr 채널에서 각각 -0.47%, -0.34%, -0.37%의 BDBR 이득

을 보였다. 인코딩 시간과 디코딩 시간의 경우 124%와 111%로 측정되었다. 

 

4. Most Dominant Intra Prediction (MDIP) 기술 

MDIP 모드는 복호화기에서 현재 블록 주변의 복원된 샘플로부터 계산된 HoG를 기반으로 MDIP 

후보 리스트를 구성하고, 구성된 후보들에 대해서 템플릿 매칭 비용을 이용하여 현재 블록 예측

에 사용할 IPM을 유도하는 화면 내 예측 기술이다 [10]. MDIP 모드는 블록 크기가 1024 이하인 

경우에 적용되며, 전체 동작 과정은 다음과 같다. 

 

단계 1. 템플릿 영역 구성 및 HoG 계산 

MDIP 모드에서는 그림 6와 같이 현재 블록의 상단 및 좌측에 위치한 복원된 샘플을 이용하여 템

플릿 영역(template area)을 구성하고, 해당 영역으로부터 HoG를 계산한다. HoG 계산 과정은 

DIMD와 동일한 방식으로 수행되나, 템플릿 영역의 구성은 블록 크기에 따라 달라진다. 

 

 
그림 6. MDIP 모드에서의 템플릿 영역 

 

현재 블록의 샘플 수가 256 미만인 경우에는 3-line 템플릿 영역을 사용하며, 256 이상인 경우에

는 그림 6에 도시된 바와 같이 4-line 템플릿 영역을 사용한다. 계산된 HoG는 각 인트라 예측 모

드에 대응되는 gradient amplitude 분포를 제공하며, 이후 후보 IPM 선별 과정에 활용된다. 

 

단계 2. HoG 기반 MDIP 후보 리스트 구성 

HoG 계산 결과를 기반으로 최대 8개의 IPM 후보를 도출한다. 구체적으로, 템플릿 영역별 HoG를 

이용하여 다음과 같이 후보 IPM을 구성한다. 우선 L-shape 형태인 상단 및 좌측 템플릿 영역으로

부터 HoG amplitude가 가장 높은 4개의 IPM을 MDIP 후보 리스트에 추가한다. 다음으로, 좌측 템

(3)
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및 좌측에 위치한 복원된 샘플을 이용하여 템플릿 영역

(template area)을 구성하고, 해당 영역으로부터 HoG를 

계산한다. HoG 계산 과정은 DIMD와 동일한 방식으로 수

행되나, 템플릿 영역의 구성은 블록 크기에 따라 달라진다.

현재 블록의 샘플 수가 256 미만인 경우에는 3-line 템

플릿 영역을 사용하며, 256 이상인 경우에는 <그림 6>

에 도시된 바와 같이 4-line 템플릿 영역을 사용한다. 계

산된 HoG는 각 인트라 예측 모드에 대응되는 gradient 

amplitude 분포를 제공하며, 이후 후보 IPM 선별 과정

에 활용된다.

단계 2. HoG 기반 MDIP 후보 리스트 구성

HoG 계산 결과를 기반으로 최대 8개의 IPM 후보를 도

출한다. 구체적으로, 템플릿 영역별 HoG를 이용하여 다

음과 같이 후보 IPM을 구성한다. 우선 L-shape 형태인 상

단 및 좌측 템플릿 영역으로부터 HoG amplitude가 가장 

높은 4개의 IPM을 MDIP 후보 리스트에 추가한다. 다음

으로, 좌측 템플릿 영역과 상단 템플릿 영역으로부터 각각 

HoG amplitude가 가장 높은 2개의 IPM 후보를 MDIP 후

보 리스트에 추가한다. 이때, MDIP 후보 리스트 내에 이

미 추가된 IPM은 중복 구성되지 않도록 한다. 상기 절차 

이후에도 후보 리스트가 모두 구성되지 않는 경우, MDIP 

후보 리스트에 구성된 IPM들에 대하여 -1, +1, -2, …, +4

의 offset을 적용한 IPM을 MDIP 후보 리스트에 추가한

다. 해당 과정은 MDIP 후보 리스트 내 첫 번째 후보부터 

MDIP 후보 리스트가 모두 구성될 때까지 반복한다.

단계 3. 템플릿 매칭 비용 기반 최종 후보 선정

구성된 MDIP 후보 리스트 내 IPM 후보들에 대하여, 현

재 블록에 대한 좌측 및 상단 1줄을 템플릿 매칭 비용을 계

산하기 위한 템플릿으로 사용하여 템플릿 매칭 비용을 계

산한다. 각 IPM에 대해 템플릿 영역을 예측한 결과와 실

제 복원된 템플릿 샘플 간의 차이를 기반으로 비용을 산

출하며, 가장 작은 템플릿 매칭 비용을 갖는 IPM을 최종 

MDIP 모드로 선정한다.

MDIP 모드에서는 현재 블록 예측에 사용된 IPM과 

HoG amplitude가 낮은 인트라 예측 모드를 PMPM, 

SMPM 및 Remainder 리스트에서 제외함으로써, 신호

에 필요한 오버헤드를 감소시키고 부호화 효율을 향상

시킨다. 구체적으로, L-shape 템플릿 영역에 대하여 계

산된 HoG 결과 중 amplitude가 가장 작은 20개의 IPM

을 PMPM, SMPM 및 Remainder 리스트에서 제외한다. 

MDIP 모드는 ECM-15.0을 기준으로 Y, Cb, Cr 채널에

서 각각 -0.07%, -0.12%, -0.03%의 BDBR 성능을 보였

다. 인코딩 시간과 디코딩 시간의 경우 100.7%와 100.1%

로 측정되었다.

5. �Spatial Geometry Partitioning 
Mode (SGPM) 기술

SGPM 모드는 현재 블록을 기하학적 분할 구조로 분할

하고, 분할된 각 영역에 서로 다른 IPM을 적용하여 예측을 

수행하는 화면 내 예측 기술이다[11]. SGPM 모드는 하나

의 분할 모드와 두 개의 IPM 조합으로 구성되며, 각 IPM

은 분할된 두 영역 중 하나에 각각 적용된다. SGPM은 블

록의 너비와 높이가 각각 4 이상 64 이하이고, 블록의 종

횡비가 1:8 보다 작으며 블록 크기가 32 이상인 경우에 적

용된다. 이를 통해 지나치게 가늘거나 작은 블록에 SGPM

이 적용되는 것을 방지한다.

SGPM 모드에서는 사전에 정의된 26개의 기하학적 분

할 모드 중 하나를 사용하여 현재 블록을 두 영역으로 분할

한다. 분할 경계에서는 두 영역에 대한 예측자가 블렌딩되

며, 블렌딩 폭은 블록 크기에 따라 적응적으로 조절된다. 

구체적으로, 블록의 최소 변 길이에 따라 블렌딩 폭을 조정

함으로써, 작은 블록에서는 과도한 블렌딩을 방지하고 큰 

블록에서는 보다 완만한 경계 처리가 가능하도록 한다. 이

러한 분할 구조를 효율적으로 신호하기 위하여, SGPM 모
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차에 따라 후보로 구성하고, 이들 중 하나를 선택하여 신호

함으로써 분할 및 예측 정보를 간결하게 표현한다. 각 분할 

영역에 적용할 IPM은 제한된 후보 리스트로부터 선택된

다. 분할 영역별 IPM 후보 리스트의 크기는 3으로 제한되

며, 해당 후보 리스트는 inter-intra GPM에서 사용된 IPM 

유도 방식을 재사용하되, TIMD 기반으로 유도된 모드는 

제외된다. 이를 통해 고려해야 할 후보 수를 제한하면서도 

예측 성능 저하를 최소화한다. SGPM에서는 현재 블록의 

상단 1-line과 좌측 1-line으로 구성된 템플릿 영역을 이용
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의 조합만을 SGPM 후보 리스트에 구성한다. SGPM 모드

는 ECM-6.0을 기준으로 Y, Cb, Cr 채널에서 각각 -0.25%, 

-0.29%, -0.25%의 BDBR 성능을 보였다. 인코딩 시간과 

디코딩 시간의 경우 103%와 103%로 측정되었다.

6. �Extrapolation Filter-based Intra 
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사각형 형태의 extrapolation filter를 사용하여 샘플 단위
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플 수가 64 이상인 경우에 한하여 사용된다. EIP 모드에
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<그림 7> EIP 모드에서 사용되는 세 종류의 filter shape
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는 각각 선택된 extrapolation 

filter의 너비와 높이를 의미한다.

EIP 모드는 위와 같이 결정된 extrapolation filter를 이

용하여 현재 블록의 예측 값을 생성한다. 예측은 현재 블

록의 좌상단 위치부터 우하단 위치까지 대각선(diagonal) 

순서로 수행되며, 각 위치의 예측 값은 식 (6)과 같이 계

산된다.
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EIP 모드는 위와 같이 결정된 extrapolation filter를 이용하여 현재 블록의 예측 값을 생성한다. 예

측은 현재 블록의 좌상단 위치부터 우하단 위치까지 대각선(diagonal) 순서로 수행되며, 각 위치

의 예측 값은 식 (6)과 같이 계산된다. 
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(6) 

여기서 Pred�𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦�는 현재 블록 내 (𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦)에서의 예측자이며, 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖는 선택된 extrapolation filter의 𝑎𝑎𝑎𝑎번째 

계수이다. 또한, 𝑎𝑎𝑎𝑎(.)는 참조 영역의 복원된 샘플 값 또는 현재 블록 내에서 예측된 샘플 값을 의미

하며, offsetX𝑖𝑖𝑖𝑖 과 offsetY𝑖𝑖𝑖𝑖는 filter shape에 따라 정의된 위치 오프셋이다. EIP 모드는 ECM-11.0을 

기준으로 Y, Cb, Cr 채널에서 각각 -0.20%, -0.14%, -0.18%의 BDBR 이득을 보였다. 인코딩 시간과 

디코딩 시간의 경우 102.1%와 101.3%로 측정되었다. 

 

7. Neural network-based intra prediction (IntraNN) 기술 

IntraNN 모드는 복호화기에서 현재 블록 주변의 참조 샘플을 입력으로 하여, 사전에 학습된 신경

망 모델을 통해 현재 블록에 대한 예측을 수행하는 화면 내 예측 기술이다 [9]. 기존의 방향성 기

반 인트라 예측 방식과 달리, 참조 샘플과 예측 블록 간의 상관 관계를 간단한 신경망 모델을 통

해 직접 모델링함으로써 보다 정확한 예측자를 생성한다. Intra NN 모드에는 복호화복잡도를 줄이

기 위한 여러 가지 최적화 기법이 적용되었다. 우선, 신경망 추론은 SADL(Simple Acceleration 

Deep Learning) 프레임워크를 이용하여 수행되며, 모델 가중치 및 중간 연산은 16비트 정수 정밀

도로 표현되고 내부 누적 연산은 32비트 정수로 수행된다. 이를 통해 부동소수점 연산을 배제하

고 복호화기 구현 복잡도를 낮춘다. 또한, 신경망 모델의 가중치 행렬에는 학습 단계에서부터 

sparsity 제약이 강하게 적용되어, 대부분의 가중치가 0이 되도록 유도된다. 이러한 sparse 구조는 

압축된 행(row) 기반 저장 방식과 sparse 행렬 곱 연산을 통해 효율적으로 처리되며, 픽셀당 

MACs(Multiply-Accumulate Operations) 수와 디코딩 시간 복잡도를 효과적으로 감소시킨다. ECM 

Intra NN에서는 예측 성능을 유지하면서 모델 파라미터 수를 줄이기 위해, 블록 크기에 따라 서로 

다른 6개의 신경망 모델을 사용한다. 각 모델은 {4×4, 8×4, 16×4, 8×8, 16×8, 16×16} 크기의 휘도 

블록을 직접 예측하도록 설계되어 있으며, 이외의 블록 크기에 대해서는 VVC의 MIP와 유사하게 

참조 샘플의 전치(transposition) 및 다운샘플링을 통해 입력을 구성한다. 전체 Intra NN 모드에서 

는 현재 블록 내 
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EIP 모드는 위와 같이 결정된 extrapolation filter를 이용하여 현재 블록의 예측 값을 생성한다. 예

측은 현재 블록의 좌상단 위치부터 우하단 위치까지 대각선(diagonal) 순서로 수행되며, 각 위치

의 예측 값은 식 (6)과 같이 계산된다. 
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기 위한 여러 가지 최적화 기법이 적용되었다. 우선, 신경망 추론은 SADL(Simple Acceleration 

Deep Learning) 프레임워크를 이용하여 수행되며, 모델 가중치 및 중간 연산은 16비트 정수 정밀

도로 표현되고 내부 누적 연산은 32비트 정수로 수행된다. 이를 통해 부동소수점 연산을 배제하

고 복호화기 구현 복잡도를 낮춘다. 또한, 신경망 모델의 가중치 행렬에는 학습 단계에서부터 

sparsity 제약이 강하게 적용되어, 대부분의 가중치가 0이 되도록 유도된다. 이러한 sparse 구조는 

압축된 행(row) 기반 저장 방식과 sparse 행렬 곱 연산을 통해 효율적으로 처리되며, 픽셀당 

MACs(Multiply-Accumulate Operations) 수와 디코딩 시간 복잡도를 효과적으로 감소시킨다. ECM 

Intra NN에서는 예측 성능을 유지하면서 모델 파라미터 수를 줄이기 위해, 블록 크기에 따라 서로 
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𝐿𝐿𝐿𝐿𝐺𝐺𝐺𝐺𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺ℎ𝑎𝑎𝑎𝑎) + 𝑓𝑓𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺ℎ𝑎𝑎𝑎𝑎 − 1 (5)

EIP 모드는 위와 같이 결정된 extrapolation filter를 이용하여 현재 블록의 예측 값을 생성한다. 예

측은 현재 블록의 좌상단 위치부터 우하단 위치까지 대각선(diagonal) 순서로 수행되며, 각 위치

의 예측 값은 식 (6)과 같이 계산된다. 

𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) = �𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 ∗ 𝑎𝑎𝑎𝑎(𝑥𝑥𝑥𝑥−𝐻𝐻𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑉𝑉𝑉𝑉𝑜𝑜𝑜𝑜𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖,𝑦𝑦𝑦𝑦−𝐻𝐻𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑉𝑉𝑉𝑉𝑜𝑜𝑜𝑜𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖)
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(6) 

여기서 Pred�𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦�는 현재 블록 내 (𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦)에서의 예측자이며, 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖는 선택된 extrapolation filter의 𝑎𝑎𝑎𝑎번째 

계수이다. 또한, 𝑎𝑎𝑎𝑎(.)는 참조 영역의 복원된 샘플 값 또는 현재 블록 내에서 예측된 샘플 값을 의미

하며, offsetX𝑖𝑖𝑖𝑖 과 offsetY𝑖𝑖𝑖𝑖는 filter shape에 따라 정의된 위치 오프셋이다. EIP 모드는 ECM-11.0을 

기준으로 Y, Cb, Cr 채널에서 각각 -0.20%, -0.14%, -0.18%의 BDBR 이득을 보였다. 인코딩 시간과 

디코딩 시간의 경우 102.1%와 101.3%로 측정되었다. 

 

7. Neural network-based intra prediction (IntraNN) 기술 

IntraNN 모드는 복호화기에서 현재 블록 주변의 참조 샘플을 입력으로 하여, 사전에 학습된 신경

망 모델을 통해 현재 블록에 대한 예측을 수행하는 화면 내 예측 기술이다 [9]. 기존의 방향성 기

반 인트라 예측 방식과 달리, 참조 샘플과 예측 블록 간의 상관 관계를 간단한 신경망 모델을 통

해 직접 모델링함으로써 보다 정확한 예측자를 생성한다. Intra NN 모드에는 복호화복잡도를 줄이

기 위한 여러 가지 최적화 기법이 적용되었다. 우선, 신경망 추론은 SADL(Simple Acceleration 

Deep Learning) 프레임워크를 이용하여 수행되며, 모델 가중치 및 중간 연산은 16비트 정수 정밀

도로 표현되고 내부 누적 연산은 32비트 정수로 수행된다. 이를 통해 부동소수점 연산을 배제하

고 복호화기 구현 복잡도를 낮춘다. 또한, 신경망 모델의 가중치 행렬에는 학습 단계에서부터 

sparsity 제약이 강하게 적용되어, 대부분의 가중치가 0이 되도록 유도된다. 이러한 sparse 구조는 

압축된 행(row) 기반 저장 방식과 sparse 행렬 곱 연산을 통해 효율적으로 처리되며, 픽셀당 

MACs(Multiply-Accumulate Operations) 수와 디코딩 시간 복잡도를 효과적으로 감소시킨다. ECM 

Intra NN에서는 예측 성능을 유지하면서 모델 파라미터 수를 줄이기 위해, 블록 크기에 따라 서로 

다른 6개의 신경망 모델을 사용한다. 각 모델은 {4×4, 8×4, 16×4, 8×8, 16×8, 16×16} 크기의 휘도 

블록을 직접 예측하도록 설계되어 있으며, 이외의 블록 크기에 대해서는 VVC의 MIP와 유사하게 

참조 샘플의 전치(transposition) 및 다운샘플링을 통해 입력을 구성한다. 전체 Intra NN 모드에서 

는 선택된 extrapolation filter의 

 
그림 8. Filter shape에 따른 EIP 모드에서의 참조 영역 

 
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐺𝐺𝐺𝐺 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺ℎ𝑎𝑎𝑎𝑎) + 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ − 1 (4)
𝐿𝐿𝐿𝐿𝐺𝐺𝐺𝐺𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺ℎ𝑎𝑎𝑎𝑎) + 𝑓𝑓𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺ℎ𝑎𝑎𝑎𝑎 − 1 (5)

EIP 모드는 위와 같이 결정된 extrapolation filter를 이용하여 현재 블록의 예측 값을 생성한다. 예

측은 현재 블록의 좌상단 위치부터 우하단 위치까지 대각선(diagonal) 순서로 수행되며, 각 위치

의 예측 값은 식 (6)과 같이 계산된다. 

𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) = �𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 ∗ 𝑎𝑎𝑎𝑎(𝑥𝑥𝑥𝑥−𝐻𝐻𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑉𝑉𝑉𝑉𝑜𝑜𝑜𝑜𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖,𝑦𝑦𝑦𝑦−𝐻𝐻𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑉𝑉𝑉𝑉𝑜𝑜𝑜𝑜𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖)

14

𝑖𝑖𝑖𝑖=0

(6) 

여기서 Pred�𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦�는 현재 블록 내 (𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦)에서의 예측자이며, 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖는 선택된 extrapolation filter의 𝑎𝑎𝑎𝑎번째 

계수이다. 또한, 𝑎𝑎𝑎𝑎(.)는 참조 영역의 복원된 샘플 값 또는 현재 블록 내에서 예측된 샘플 값을 의미

하며, offsetX𝑖𝑖𝑖𝑖 과 offsetY𝑖𝑖𝑖𝑖는 filter shape에 따라 정의된 위치 오프셋이다. EIP 모드는 ECM-11.0을 

기준으로 Y, Cb, Cr 채널에서 각각 -0.20%, -0.14%, -0.18%의 BDBR 이득을 보였다. 인코딩 시간과 

디코딩 시간의 경우 102.1%와 101.3%로 측정되었다. 

 

7. Neural network-based intra prediction (IntraNN) 기술 

IntraNN 모드는 복호화기에서 현재 블록 주변의 참조 샘플을 입력으로 하여, 사전에 학습된 신경

망 모델을 통해 현재 블록에 대한 예측을 수행하는 화면 내 예측 기술이다 [9]. 기존의 방향성 기

반 인트라 예측 방식과 달리, 참조 샘플과 예측 블록 간의 상관 관계를 간단한 신경망 모델을 통

해 직접 모델링함으로써 보다 정확한 예측자를 생성한다. Intra NN 모드에는 복호화복잡도를 줄이

기 위한 여러 가지 최적화 기법이 적용되었다. 우선, 신경망 추론은 SADL(Simple Acceleration 

Deep Learning) 프레임워크를 이용하여 수행되며, 모델 가중치 및 중간 연산은 16비트 정수 정밀

도로 표현되고 내부 누적 연산은 32비트 정수로 수행된다. 이를 통해 부동소수점 연산을 배제하

고 복호화기 구현 복잡도를 낮춘다. 또한, 신경망 모델의 가중치 행렬에는 학습 단계에서부터 

sparsity 제약이 강하게 적용되어, 대부분의 가중치가 0이 되도록 유도된다. 이러한 sparse 구조는 

압축된 행(row) 기반 저장 방식과 sparse 행렬 곱 연산을 통해 효율적으로 처리되며, 픽셀당 

MACs(Multiply-Accumulate Operations) 수와 디코딩 시간 복잡도를 효과적으로 감소시킨다. ECM 

Intra NN에서는 예측 성능을 유지하면서 모델 파라미터 수를 줄이기 위해, 블록 크기에 따라 서로 

다른 6개의 신경망 모델을 사용한다. 각 모델은 {4×4, 8×4, 16×4, 8×8, 16×8, 16×16} 크기의 휘도 

블록을 직접 예측하도록 설계되어 있으며, 이외의 블록 크기에 대해서는 VVC의 MIP와 유사하게 

참조 샘플의 전치(transposition) 및 다운샘플링을 통해 입력을 구성한다. 전체 Intra NN 모드에서 

번째 계수이

다. 또한, 

 
그림 8. Filter shape에 따른 EIP 모드에서의 참조 영역 

 
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐺𝐺𝐺𝐺 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺ℎ𝑎𝑎𝑎𝑎) + 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ − 1 (4)
𝐿𝐿𝐿𝐿𝐺𝐺𝐺𝐺𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺ℎ𝑎𝑎𝑎𝑎) + 𝑓𝑓𝑓𝑓𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺ℎ𝑎𝑎𝑎𝑎 − 1 (5)

EIP 모드는 위와 같이 결정된 extrapolation filter를 이용하여 현재 블록의 예측 값을 생성한다. 예

측은 현재 블록의 좌상단 위치부터 우하단 위치까지 대각선(diagonal) 순서로 수행되며, 각 위치

의 예측 값은 식 (6)과 같이 계산된다. 
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(6) 

여기서 Pred�𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦�는 현재 블록 내 (𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦)에서의 예측자이며, 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖는 선택된 extrapolation filter의 𝑎𝑎𝑎𝑎번째 

계수이다. 또한, 𝑎𝑎𝑎𝑎(.)는 참조 영역의 복원된 샘플 값 또는 현재 블록 내에서 예측된 샘플 값을 의미

하며, offsetX𝑖𝑖𝑖𝑖 과 offsetY𝑖𝑖𝑖𝑖는 filter shape에 따라 정의된 위치 오프셋이다. EIP 모드는 ECM-11.0을 

기준으로 Y, Cb, Cr 채널에서 각각 -0.20%, -0.14%, -0.18%의 BDBR 이득을 보였다. 인코딩 시간과 

디코딩 시간의 경우 102.1%와 101.3%로 측정되었다. 

 

7. Neural network-based intra prediction (IntraNN) 기술 

IntraNN 모드는 복호화기에서 현재 블록 주변의 참조 샘플을 입력으로 하여, 사전에 학습된 신경

망 모델을 통해 현재 블록에 대한 예측을 수행하는 화면 내 예측 기술이다 [9]. 기존의 방향성 기

반 인트라 예측 방식과 달리, 참조 샘플과 예측 블록 간의 상관 관계를 간단한 신경망 모델을 통

해 직접 모델링함으로써 보다 정확한 예측자를 생성한다. Intra NN 모드에는 복호화복잡도를 줄이

기 위한 여러 가지 최적화 기법이 적용되었다. 우선, 신경망 추론은 SADL(Simple Acceleration 

Deep Learning) 프레임워크를 이용하여 수행되며, 모델 가중치 및 중간 연산은 16비트 정수 정밀

도로 표현되고 내부 누적 연산은 32비트 정수로 수행된다. 이를 통해 부동소수점 연산을 배제하

고 복호화기 구현 복잡도를 낮춘다. 또한, 신경망 모델의 가중치 행렬에는 학습 단계에서부터 

sparsity 제약이 강하게 적용되어, 대부분의 가중치가 0이 되도록 유도된다. 이러한 sparse 구조는 

압축된 행(row) 기반 저장 방식과 sparse 행렬 곱 연산을 통해 효율적으로 처리되며, 픽셀당 

MACs(Multiply-Accumulate Operations) 수와 디코딩 시간 복잡도를 효과적으로 감소시킨다. ECM 

Intra NN에서는 예측 성능을 유지하면서 모델 파라미터 수를 줄이기 위해, 블록 크기에 따라 서로 

다른 6개의 신경망 모델을 사용한다. 각 모델은 {4×4, 8×4, 16×4, 8×8, 16×8, 16×16} 크기의 휘도 

블록을 직접 예측하도록 설계되어 있으며, 이외의 블록 크기에 대해서는 VVC의 MIP와 유사하게 

참조 샘플의 전치(transposition) 및 다운샘플링을 통해 입력을 구성한다. 전체 Intra NN 모드에서 
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측은 현재 블록의 좌상단 위치부터 우하단 위치까지 대각선(diagonal) 순서로 수행되며, 각 위치

의 예측 값은 식 (6)과 같이 계산된다. 
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Intra NN에서는 예측 성능을 유지하면서 모델 파라미터 수를 줄이기 위해, 블록 크기에 따라 서로 
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참조 샘플의 전치(transposition) 및 다운샘플링을 통해 입력을 구성한다. 전체 Intra NN 모드에서 
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측은 현재 블록의 좌상단 위치부터 우하단 위치까지 대각선(diagonal) 순서로 수행되며, 각 위치

의 예측 값은 식 (6)과 같이 계산된다. 
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여기서 Pred�𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦�는 현재 블록 내 (𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦)에서의 예측자이며, 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖는 선택된 extrapolation filter의 𝑎𝑎𝑎𝑎번째 

계수이다. 또한, 𝑎𝑎𝑎𝑎(.)는 참조 영역의 복원된 샘플 값 또는 현재 블록 내에서 예측된 샘플 값을 의미

하며, offsetX𝑖𝑖𝑖𝑖 과 offsetY𝑖𝑖𝑖𝑖는 filter shape에 따라 정의된 위치 오프셋이다. EIP 모드는 ECM-11.0을 

기준으로 Y, Cb, Cr 채널에서 각각 -0.20%, -0.14%, -0.18%의 BDBR 이득을 보였다. 인코딩 시간과 

디코딩 시간의 경우 102.1%와 101.3%로 측정되었다. 
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IntraNN 모드는 복호화기에서 현재 블록 주변의 참조 샘플을 입력으로 하여, 사전에 학습된 신경
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해 직접 모델링함으로써 보다 정확한 예측자를 생성한다. Intra NN 모드에는 복호화복잡도를 줄이
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고 복호화기 구현 복잡도를 낮춘다. 또한, 신경망 모델의 가중치 행렬에는 학습 단계에서부터 
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압축된 행(row) 기반 저장 방식과 sparse 행렬 곱 연산을 통해 효율적으로 처리되며, 픽셀당 

MACs(Multiply-Accumulate Operations) 수와 디코딩 시간 복잡도를 효과적으로 감소시킨다. ECM 

Intra NN에서는 예측 성능을 유지하면서 모델 파라미터 수를 줄이기 위해, 블록 크기에 따라 서로 

다른 6개의 신경망 모델을 사용한다. 각 모델은 {4×4, 8×4, 16×4, 8×8, 16×8, 16×16} 크기의 휘도 

블록을 직접 예측하도록 설계되어 있으며, 이외의 블록 크기에 대해서는 VVC의 MIP와 유사하게 

참조 샘플의 전치(transposition) 및 다운샘플링을 통해 입력을 구성한다. 전체 Intra NN 모드에서 
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이러한 sparse 구조는 압축된 행 (row) 기반 저장 방식과 

sparse 행렬 곱 연산을 통해 효율적으로 처리되며, 픽셀

당 MACs (Multiply-Accumulate Operations) 수와 디코

딩 시간 복잡도를 효과적으로 감소시킨다. ECM IntraNN

에서는 예측 성능을 유지하면서 모델 파라미터 수를 줄이

기 위해, 블록 크기에 따라 서로 다른 6개의 신경망 모델

을 사용한다. 각 모델은 {4×4, 8×4, 16×4, 8×8, 16×8, 

16×16} 크기의 휘도 블록을 직접 예측하도록 설계되어 

있으며, 이외의 블록 크기에 대해서는 VVC의 MIP와 유

사하게 참조 샘플의 전치 (transposition) 및 다운샘플링

을 통해 입력을 구성한다. 전체 IntraNN 모드에서 사용되

는 파라미터 수는 약 76만 개로, 기존 방식 대비 모델 규모

가 크게 축소되었다.

신경망을 통해 생성된 예측 블록은 최종적으로 인트라 

예측 모드 (IPM)를 직접 신호하지 않고, DIMD와 동일

한 방식으로 예측 결과의 기울기 정보를 분석하여 등가의 

IPM을 복호화기에서 유도한다. 이로 인해 TMP, EIP, MIP

와 마찬가지로 추가적인 인트라 모드 시그널링 없이 예측

이 가능하다. 휘도 블록 크기가 64 샘플을 초과하는 경우

에는, DIMD로 유도된 IPM과 함께 PLANAR 모드를 추가 

후보로 사용하며, 이 중 선택된 IPM에 대한 CU-level 플

래그만을 신호한다. 결과적으로, IntraNN 기반 예측은 신

경망의 표현력을 활용하여 예측 정확도를 향상시키면서

도, sparse 가중치, 정수 연산, 블록 크기별 모델 분리 및 

복호화기 측 IPM 유도 구조를 통해 디코딩 복잡도를 효과

적으로 제어한 ECM용 화면 내 예측 기술이라 할 수 있다. 

IntraNN 모드는 ECM-14.0을 기준으로 Y, Cb, Cr 채널에

서 각각 -0.58%, -0.40%, -0.40%의 BDBR 성능을 보였

다. 인코딩 시간과 디코딩 시간의 경우 101.6%와 109.8%

로 측정되었다.

8. �Matrix-based Position Dependent 
Intra Prediction (MPDIP) 기술

MPDIP 모드는 기존의 방향성 기반 화면 내 예측 모드

와 사전 학습된 행렬과 참조 샘플을 이용해 현재 블록에 

대한 예측을 수행하는 화면 내 예측 기술이다[8]. MPDIP 

모드에서는 복원된 주변 참조 샘플을 입력으로 하여, 현재 

블록 내 위치에 따라 선택되는 예측 필터 계수를 적용함

으로써 현재 블록의 예측 샘플을 생성한다. 해당 필터 계

수는 사전 학습 과정을 통해 도출되며, 부호화기와 복호

화기가 동일한 필터를 사용하므로 추가적인 신호화는 필

요하지 않다. MPDIP 모드는 휘도 채널에 대해 적용되며, 

사전에 정의된 블록 크기 집합에 포함되는 경우에 한하여 

활성화된다. 또한, 모든 인트라 예측 모드에 대해 MPDIP

를 적용하는 것이 아니라, 일부 방향성 인트라 예측 모드

를 PDP 기반 예측으로 대체하는 방식으로 동작한다. 블록 

크기 및 선택된 인트라 예측 모드에 따라 참조 샘플의 길

이와 필터 적용 방식이 달라지며, 이를 통해 다양한 공간

적 특성을 효율적으로 반영한다. 상대적으로 큰 블록의 경

우, MPDIP 예측은 16×16 위치에서 우선 수행되며, 이후 

보간 기반의 업샘플링 과정을 통해 전체 블록에 대한 예

측 값이 생성된다. 이러한 구조를 통해 MPDIP 모드는 기

존 angular intra prediction 대비 향상된 예측 정확도를 

제공하면서도, 복호화 복잡도를 제한된 범위 내에서 유지

할 수 있다. MPDIP 모드는 ECM-12.0을 기준으로 Y, Cb, 

Cr 채널에서 각각 -0.31%, -0.33%, -0.34%의 BDBR 성능

을 보였다. 인코딩 시간과 디코딩 시간의 경우 101.2%와 

100.2%로 측정되었다.

Ⅲ. 결 론

본 글에서 분석한 ECM 기반 휘도 채널 화면 내 예측 

기술들은, 압축 성능 향상을 위해 서로 다른 방향을 취하

고 있음을 확인할 수 있었다. 이들 기술은 복호화기 측에

서 예측자를 생성하는 접근, 예측에 사용되는 후보 리스

트를 재구성하는 접근, 그리고 사전 학습된 모델을 사용하

여 예측자를 생성하는 접근으로 구분될 수 있으며, 각 방

식은 예측 정확도, 신호 오버헤드, 그리고 계산 복잡도 간
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의 상이한 절충점을 가진다. 특히 복호화기 측에서 예측자

를 생성하는 화면 내 예측 기술들은 추가적인 예측 정보

의 신호화 없이 예측자를 생성할 수 있다는 장점을 가지

는 반면, 템플릿 영역에 대한 접근으로 인한 계산 복잡도 

및 하드웨어 구현 측면에서의 부담이 함께 수반된다. 이

는 Beyond VVC 단계의 화면 내 예측 기술 설계에서 압

축 성능뿐만 아니라, 하드웨어 친화성과 시스템 구현 가능

성을 함께 고려할 필요가 있음을 시사한다. 이러한 관점에

서 향후 화면 내 예측 기술은 단순한 예측 정확도 향상을 

넘어, 예측 구조의 단순화, 템플릿 활용 범위의 제어, 그리

고 복잡도 관리 측면에서의 설계가 중요한 방향으로 고려

될 것으로 판단된다.
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