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Ⅰ. 서 론

ISO/IEC의 Moving Picture Experts Group (MPEG)

과 ITU-T의 Video Coding Experts Group (VCEG)이 공

동으로 운영하는 Joint Video Experts Team (JVET)은 

Versatile Video Coding (VVC) 표준 제정 이후, VVC 대

비 높은 부호화 성능 향상을 목표로 기술 탐색을 진행하

고 있다. 이러한 실험을 지원하기 위해 개발된 참조 소프

트웨어인 Enhanced Compression Model (ECM)[1][2]은 

VVC 기반 구조를 유지하면서 다수의 새로운 부호화 기술

을 포함한다. 특히, ECM-18.0은 All Intra (AI) 부호화 조

건에서 VVC 대비 평균 16.87%의 BD-rate 이득을 보이며 

차세대 표준화를 위한 기술 검증 플랫폼으로서 높은 부호

화 효율을 입증했다[3]. 본 고에서는 ECM에 새롭게 도입

된 색차 화면내 부호화 기술과 블록 벡터 기반 부호화 기

술을 중심으로 그 구조와 동작원리를 소개한다.

ECM 화면내 예측 기술 Ⅱ: 
색차 및 블록 벡터 기반 화면내 예측

□ 김용헌, 노승민, 방준호, 이소은, 최해철  / 국립한밭대학교

기 술 기 고 문

요 약

Enhanced Compression Model (ECM)은 Versatile Video Coding (VVC) 표준 제정 이후, Joint Video Experts 

Team이 개발 중인 참조 소프트웨어로 VVC 기반 구조를 유지하면서도 다수의 새로운 부호화 기술을 포함한다. 본 고에서는 

ECM에서 새롭게 도입된 색차 화면내 부호화 기술과 블록 벡터 기반 화면내 부호화 기술을 소개한다. ECM의 색차 화면내 부호

화 기술은 기존 VVC의 Cross Component Linear Model을 보강하여 Cross Component Prediction (CCP) 및 Non-

CCP 기반의 예측 도구를 추가함으로써 예측 성능을 대폭 개선하였다. 블록 벡터 기반 부호화 측면에서는 기존 VVC의 Intra 

Block Copy 모드와 함께 Intra Template Matching Prediction 모드를 도입하였으며, 일부 화면간 예측 모드와 연계되어 

전체 예측 구조의 경계를 완화시키고 신호 다양성을 증가시키는 효과를 가져왔다. 그러나 이러한 예측 기술의 집약은 부호화 복

잡도 증가를 수반하였으며, 그 결과 인코더와 디코더 복잡도가 각각 1080%, 606% 증가하였다. 따라서 향후 연구에서는 부호

화 효율을 유지하는 동시에 복잡도를 줄이기 위한 구조적 최적화 및 예측 모드 단순화 등의 기술 개발이 필요하다.

차세대 비디오 코덱 표준 탐색기술(ECM/NNVC)



방송과 미디어 제31권 1호  44

44
기술기고문

44

Ⅱ. 색차 화면내 부호화 기술

 1. Cross Component Prediction 

Cross Component Prediction (CCP) 모드는 휘도 성

분과 색차 성분 간의 상관성을 활용하여 색차 성분을 예

측하는 기법들의 집합으로, 휘도 성분과 색차 성분의 상

관관계를 다양한 형태의 선형·비선형 모델링하여 이를 기

반으로 현재 색차 블록을 예측하는 기술이다. 본 절에서

는 CCP의 기본 개념과 주요 동작 원리에 대해 설명하고

자 한다.

1) Multi Model Linear Model

Multi Model Linear Model (MMLM)은 VVC 표준에 채

택된 Cross-Component Linear Model (CCLM)을 확장

한 기법으로, 두 개의 선형 모델을 이용하여 색차 성분을 

예측한다[4]. 기존 CCLM은 <그림 1> 및 식 (1)과 같이 현

재 블록의 복원된 휘도 블록과 색차 블록 간의 관계를 단

일 선형 모델로 근사하며, 주변 템플릿을 이용해 예측 오

차를 최소화하도록 모델 계수를 유도한다. 반면, MMLM

은 현재 부호화 중인 색차 블록 주변의 휘도 참조 샘플 평

균값을 임계값으로 설정하고, 이를 기준으로 참조 휘도 

샘플을 두 그룹으로 분류한다. 각 그룹에는 서로 다른 선

형 모델이 적용되며, 임계값 이하의 샘플에는 첫 번째 모

델을, 초과하는 샘플에는 두 번째 모델을 적용한다. 이러

한 예측 과정은 식 (2)와 같이 하나의 조건부 선형 모델

로 표현된다.

2) Convolutional Cross-Component Model

Convolutional Cross-Component Model (CCCM)

은 복원된 휘도 신호로부터 색차 신호를 예측하기 위해 

7-tap 합성곱(convolution) 필터를 사용하는 색차 성분 

예측 기법이다[5]. 해당 필터는 중앙(C), 상단(N), 하단

(S), 좌측(W), 우측(E)에 위치한 5개의 공간적 휘도 샘플

과, 중앙 휘도값에 기반해 계산되는 비선형 항 P(식 (3)), 

그리고 비트 깊이의 중간값으로 설정되는 편향 항 B(식 

(4))로 구성된다. 5개의 휘도 샘플은 <그림 2>와 같이 십

자(+) 형태의 공간 필터 구조를 이루며, 필터 출력은 식 

(5)와 같이 각 입력 항과 필터 계수 ci의 선형 결합으로 계

산된 후 색차 신호의 유효 범위를 벗어나지 않도록 클리

핑된다. 필터 계수 ci는 참조 색차 영역에서 예측 색차 신

호와 복원된 색차 신호 간의 Mean Square Error (MSE)
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간 필터 구조를 이루며, 필터 출력은 식 (5)와 같이 각 입력 항과 필터 계수 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖의 선형 결합

으로 계산된 후 색차 신호의 유효 범위를 벗어나지 않도록 클리핑된다. 필터 계수 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖는 참

조 색차 영역에서 예측 색차 신호와 복원된 색차 신호 간의 Mean Square Error (MSE)를 최

소화하도록 유도되며, PU 경계부 샘플에 대해서는 필터 적용의 안정성을 확보하기 위한 패

딩이 수행된다. CCCM은 단일 모델(single model)과 다중 모델(multi-model)을 모두 지원하

며, 다중 모델의 경우 참조 휘도 샘플의 평균값을 기준으로 샘플을 두 그룹으로 분류하고 

각 그룹에 대해 서로 다른 7-tap 필터 계수를 적용한다. 

(1)

(2)

Multi Model Linear Model (MMLM)은 VVC 표준에 채택된 Cross-Component Linear Model 

(CCLM)을 확장한 기법으로, 두 개의 선형 모델을 이용하여 색차 성분을 예측한다[4]. 기존 
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<그림 1> Cross Component Linear Model[4]

            
<그림 2> CCCM의 공간적 합성곱 필터[5] 
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 Gradient Linear Model 

Gradient Linear Model (GLM)은 휘도 샘플의 기울기(gradient)를 이용하여 색차 신호를 예

측하는 확장 모델로, 2-파라미터 GLM(GLM-2)과 3-파라미터 GLM(GLM-3)의 두 가지 형태가 

정의되어 있으며, 각각 식 (6)과 식 (7)에 해당하는 선형 형태로 표현된다[6]. 이때 𝐺𝐺𝐺𝐺는 휘도 

기울기, 𝐿𝐿𝐿𝐿은 다운샘플링한 휘도값이다. GLM에서 사용되는 휘도 기울기 𝐺𝐺𝐺𝐺는 <그림 3>과 같

이 정의된 네 종류의 소벨 기반 gradient 필터 중 하나를 통해 계산되며, 현재 CU에서 

CCLM이 활성화된 경우 GLM 사용 여부, GLM 모드 선택, 그리고 네 개의 gradient 필터 중 

하나를 선택하기 위한 구문 요소를 추가로 시그널링한다. 

 

𝐶𝐶𝐶𝐶 = 𝛼𝛼𝛼𝛼 ∙ 𝐺𝐺𝐺𝐺 + 𝛽𝛽𝛽𝛽                                    (6) 

𝐶𝐶𝐶𝐶 = 𝛼𝛼𝛼𝛼0 ∙ 𝐺𝐺𝐺𝐺 + 𝛼𝛼𝛼𝛼1 ∙ 𝐿𝐿𝐿𝐿 + 𝛼𝛼𝛼𝛼2 ∙ 𝛽𝛽𝛽𝛽                              (7) 

 

 
<그림 3> GLM에서 사용되는 네 가지 gradient 필터 [6] 

 

 Non-downsampled CCCM 

Non-downsampled CCCM은 색차 해상도에 맞추어 다운샘플링한 휘도값 대신, 원본 휘도 

샘플을 직접 사용하는 확장 구조이며, 이 경우 공간 항과 비선형 항, 편향 항의 구성이 기

존 CCCM보다 확장된 형태로 정의된다. 

 

 Block Vector Guided CCCM 

Block Vector Guided CCCM (BVG-CCCM)은 Intra Block Copy (IBC) 또는 Intra Template 

Matching Prediction (IntraTMP)로 복호된 동일 위치(co-located) 휘도 블록의 블록 벡터

(Block Vector, BV)를 이용하여 참조 템플릿 영역을 선택하며, 선택된 템플릿을 기반으로 필

터 계수를 계산한다. BVG-CCCM에서 사용되는 필터는 식 (8)과 같이 총 11-tap 구조를 갖

는다. 5-tap 공간 필터의 입력은 기존 CCCM과 동일하며, 비선형 항 𝑃𝑃𝑃𝑃는 해당 휘도 샘플을 

기반으로 계산된다. BVG-CCCM은 Direct Block Vector (DBV) 모드와 유사하게, 공존 휘도 영

역 내 5개의 위치를 탐색하여 해당 BV를 이용해 참조 영역을 결정한다. 

<그림 2> CCCM의 공간적 합성곱 필터[5]
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를 최소화하도록 유도되며, PU 경계부 샘플에 대해서는 

필터 적용의 안정성을 확보하기 위한 패딩이 수행된다. 

CCCM은 단일 모델(single model)과 다중 모델(multi-

model)을 모두 지원하며, 다중 모델의 경우 참조 휘도 

샘플의 평균값을 기준으로 샘플을 두 그룹으로 분류하고 

각 그룹에 대해 서로 다른 7-tap 필터 계수를 적용한다.

3) Gradient Linear Model

Gradient Linear Model (GLM)은 휘도 샘플의 기

울기(gradient)를 이용하여 색차 신호를 예측하는 확

장 모델로, 2-파라미터 GLM(GLM-2)과 3-파라미터 

GLM(GLM-3)의 두 가지 형태가 정의되어 있으며, 각각 

식 (6)과 식 (7)에 해당하는 선형 형태로 표현된다[6]. 이때 

            
<그림 2> CCCM의 공간적 합성곱 필터[5] 
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를 선형결합하여 색차 신호를 예측하는 방식이다[8]. 이때, <그림 5>에 제시된 다운샘플링 

필터 𝐻𝐻𝐻𝐻, 𝐺𝐺𝐺𝐺1, 𝐺𝐺𝐺𝐺2, 𝐺𝐺𝐺𝐺3를 통해 생성된 휘도 신호들이 사용되며, 선형 모델은 식 (12)와 같이 정

의된다. 

 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑐𝑐𝑐𝑐0 ∗  𝐻𝐻𝐻𝐻(𝐶𝐶𝐶𝐶) +  𝑐𝑐𝑐𝑐1 ∗   𝐺𝐺𝐺𝐺1(𝐶𝐶𝐶𝐶) +  𝑐𝑐𝑐𝑐2 ∗   𝐺𝐺𝐺𝐺2(𝐶𝐶𝐶𝐶) +  𝑐𝑐𝑐𝑐3 ∗   𝐺𝐺𝐺𝐺3(𝐶𝐶𝐶𝐶) +  𝑐𝑐𝑐𝑐4 ∗   𝑃𝑃𝑃𝑃�𝐻𝐻𝐻𝐻(𝐶𝐶𝐶𝐶)� 
+ 𝑐𝑐𝑐𝑐5 ∗   𝑃𝑃𝑃𝑃(𝐺𝐺𝐺𝐺1(𝐶𝐶𝐶𝐶))  +  𝑐𝑐𝑐𝑐6 ∗  𝑃𝑃𝑃𝑃(𝐺𝐺𝐺𝐺2(𝐶𝐶𝐶𝐶))  +  𝑐𝑐𝑐𝑐7 ∗  𝑋𝑋𝑋𝑋 +  𝑐𝑐𝑐𝑐8 ∗  𝑌𝑌𝑌𝑌 +  𝑐𝑐𝑐𝑐9 ∗  𝐵𝐵𝐵𝐵           (12) 

 

 
<그림 5> CCCM에 적용되는 다운샘플링 필터[8] 

 

 Local-Boosting Cross-Component Prediction 

Local-Boosting Cross-Component Prediction (LB-CCP)은 MMLM 또는 다중 모델 기반 

 
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑐𝑐𝑐𝑐0𝐶𝐶𝐶𝐶 +  𝑐𝑐𝑐𝑐1𝑁𝑁𝑁𝑁 +  𝑐𝑐𝑐𝑐2𝑆𝑆𝑆𝑆 +  𝑐𝑐𝑐𝑐3𝐸𝐸𝐸𝐸 +  𝑐𝑐𝑐𝑐4𝑊𝑊𝑊𝑊 +  

𝑐𝑐𝑐𝑐5𝑃𝑃𝑃𝑃(𝐶𝐶𝐶𝐶)  +  𝑐𝑐𝑐𝑐6𝑃𝑃𝑃𝑃(𝑁𝑁𝑁𝑁) +  𝑐𝑐𝑐𝑐7𝑃𝑃𝑃𝑃(𝑆𝑆𝑆𝑆)  +  𝑐𝑐𝑐𝑐8𝑃𝑃𝑃𝑃(𝑊𝑊𝑊𝑊)  +  𝑐𝑐𝑐𝑐9𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸) +  𝑐𝑐𝑐𝑐10𝐵𝐵𝐵𝐵                 (8) 

 

 Gradient and Location-based CCCM 

Gradient and Location-based CCCM (GL-CCCM)은 공간 휘도 샘플을 색차값으로 매핑하기 

위해 하나의 공간 휘도 샘플(C), 두 개의 기울기 값(𝐺𝐺𝐺𝐺𝑦𝑦𝑦𝑦, 𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥 ), 두 개의 위치 정보(𝑌𝑌𝑌𝑌, 𝑋𝑋𝑋𝑋), 비선형 

항, 그리고 편향 항을 입력으로 사용하는 필터 기반 예측 방법이다[7]. GL-CCCM은 CCCM의 

공간 이웃 샘플을 기울기 및 위치 정보로 대체하여 사용한다. GL-CCCM의 예측식은 식 (9)

와 같이 정의된다. 여기서 𝐺𝐺𝐺𝐺𝑦𝑦𝑦𝑦와 𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥는 각각 수직 및 수평 기울기로, <그림 4>와 같이 주변 

8개 휘도 샘플을 이용하여 식(10)과 식 (11)과 같이 계산된다. 또한, 𝑌𝑌𝑌𝑌와 𝑋𝑋𝑋𝑋는 중심 휘도 샘

플(C)의 공간 좌표이며, 나머지 입력 항(P, B) 및 필터 계수 계산 방식, 참조 영역 설정은 

CCCM과 동일한 절차를 따른다. 

 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑐𝑐𝑐𝑐0𝐶𝐶𝐶𝐶 + 𝑐𝑐𝑐𝑐1𝐺𝐺𝐺𝐺𝑦𝑦𝑦𝑦  + 𝑐𝑐𝑐𝑐2𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥   + 𝑐𝑐𝑐𝑐3𝑌𝑌𝑌𝑌 +  𝑐𝑐𝑐𝑐4𝑋𝑋𝑋𝑋 + 𝑐𝑐𝑐𝑐5𝑃𝑃𝑃𝑃 + 𝑐𝑐𝑐𝑐6𝐵𝐵𝐵𝐵          (9) 

𝐺𝐺𝐺𝐺𝑦𝑦𝑦𝑦  =  (2𝑁𝑁𝑁𝑁 +  𝑁𝑁𝑁𝑁𝑊𝑊𝑊𝑊 +  𝑁𝑁𝑁𝑁𝐸𝐸𝐸𝐸)  − (2𝑆𝑆𝑆𝑆 +  𝑆𝑆𝑆𝑆𝑊𝑊𝑊𝑊 +  𝑆𝑆𝑆𝑆𝐸𝐸𝐸𝐸)                     (10) 

𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥  =  (2𝑊𝑊𝑊𝑊 +  𝑁𝑁𝑁𝑁𝑊𝑊𝑊𝑊 +  𝑆𝑆𝑆𝑆𝑊𝑊𝑊𝑊)  − (2𝐸𝐸𝐸𝐸 +  𝑁𝑁𝑁𝑁𝐸𝐸𝐸𝐸 +  𝑆𝑆𝑆𝑆𝐸𝐸𝐸𝐸)                     (11) 
 

 
<그림 4> GL-CCCM의 공간적 합성곱 필터 [7] 

 

 CCCM with Multiple Downsampling Filter  

Multiple Downsampling Fliter 기반 CCCM은 다운샘플링 필터를 적용해 생성된 휘도 신호

를 선형결합하여 색차 신호를 예측하는 방식이다[8]. 이때, <그림 5>에 제시된 다운샘플링 

필터 𝐻𝐻𝐻𝐻, 𝐺𝐺𝐺𝐺1, 𝐺𝐺𝐺𝐺2, 𝐺𝐺𝐺𝐺3를 통해 생성된 휘도 신호들이 사용되며, 선형 모델은 식 (12)와 같이 정

의된다. 

 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑐𝑐𝑐𝑐0 ∗  𝐻𝐻𝐻𝐻(𝐶𝐶𝐶𝐶) +  𝑐𝑐𝑐𝑐1 ∗   𝐺𝐺𝐺𝐺1(𝐶𝐶𝐶𝐶) +  𝑐𝑐𝑐𝑐2 ∗   𝐺𝐺𝐺𝐺2(𝐶𝐶𝐶𝐶) +  𝑐𝑐𝑐𝑐3 ∗   𝐺𝐺𝐺𝐺3(𝐶𝐶𝐶𝐶) +  𝑐𝑐𝑐𝑐4 ∗   𝑃𝑃𝑃𝑃�𝐻𝐻𝐻𝐻(𝐶𝐶𝐶𝐶)� 
+ 𝑐𝑐𝑐𝑐5 ∗   𝑃𝑃𝑃𝑃(𝐺𝐺𝐺𝐺1(𝐶𝐶𝐶𝐶))  +  𝑐𝑐𝑐𝑐6 ∗  𝑃𝑃𝑃𝑃(𝐺𝐺𝐺𝐺2(𝐶𝐶𝐶𝐶))  +  𝑐𝑐𝑐𝑐7 ∗  𝑋𝑋𝑋𝑋 +  𝑐𝑐𝑐𝑐8 ∗  𝑌𝑌𝑌𝑌 +  𝑐𝑐𝑐𝑐9 ∗  𝐵𝐵𝐵𝐵           (12) 

 

 
<그림 5> CCCM에 적용되는 다운샘플링 필터[8] 

 

 Local-Boosting Cross-Component Prediction 

Local-Boosting Cross-Component Prediction (LB-CCP)은 MMLM 또는 다중 모델 기반 

(8)

 
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑐𝑐𝑐𝑐0𝐶𝐶𝐶𝐶 +  𝑐𝑐𝑐𝑐1𝑁𝑁𝑁𝑁 +  𝑐𝑐𝑐𝑐2𝑆𝑆𝑆𝑆 +  𝑐𝑐𝑐𝑐3𝐸𝐸𝐸𝐸 +  𝑐𝑐𝑐𝑐4𝑊𝑊𝑊𝑊 +  

𝑐𝑐𝑐𝑐5𝑃𝑃𝑃𝑃(𝐶𝐶𝐶𝐶)  +  𝑐𝑐𝑐𝑐6𝑃𝑃𝑃𝑃(𝑁𝑁𝑁𝑁) +  𝑐𝑐𝑐𝑐7𝑃𝑃𝑃𝑃(𝑆𝑆𝑆𝑆)  +  𝑐𝑐𝑐𝑐8𝑃𝑃𝑃𝑃(𝑊𝑊𝑊𝑊)  +  𝑐𝑐𝑐𝑐9𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸) +  𝑐𝑐𝑐𝑐10𝐵𝐵𝐵𝐵                 (8) 

 

 Gradient and Location-based CCCM 

Gradient and Location-based CCCM (GL-CCCM)은 공간 휘도 샘플을 색차값으로 매핑하기 

위해 하나의 공간 휘도 샘플(C), 두 개의 기울기 값(𝐺𝐺𝐺𝐺𝑦𝑦𝑦𝑦, 𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥 ), 두 개의 위치 정보(𝑌𝑌𝑌𝑌, 𝑋𝑋𝑋𝑋), 비선형 

항, 그리고 편향 항을 입력으로 사용하는 필터 기반 예측 방법이다[7]. GL-CCCM은 CCCM의 

공간 이웃 샘플을 기울기 및 위치 정보로 대체하여 사용한다. GL-CCCM의 예측식은 식 (9)

와 같이 정의된다. 여기서 𝐺𝐺𝐺𝐺𝑦𝑦𝑦𝑦와 𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥는 각각 수직 및 수평 기울기로, <그림 4>와 같이 주변 

8개 휘도 샘플을 이용하여 식(10)과 식 (11)과 같이 계산된다. 또한, 𝑌𝑌𝑌𝑌와 𝑋𝑋𝑋𝑋는 중심 휘도 샘

플(C)의 공간 좌표이며, 나머지 입력 항(P, B) 및 필터 계수 계산 방식, 참조 영역 설정은 

CCCM과 동일한 절차를 따른다. 

 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑐𝑐𝑐𝑐0𝐶𝐶𝐶𝐶 + 𝑐𝑐𝑐𝑐1𝐺𝐺𝐺𝐺𝑦𝑦𝑦𝑦  + 𝑐𝑐𝑐𝑐2𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥   + 𝑐𝑐𝑐𝑐3𝑌𝑌𝑌𝑌 +  𝑐𝑐𝑐𝑐4𝑋𝑋𝑋𝑋 + 𝑐𝑐𝑐𝑐5𝑃𝑃𝑃𝑃 + 𝑐𝑐𝑐𝑐6𝐵𝐵𝐵𝐵          (9) 

𝐺𝐺𝐺𝐺𝑦𝑦𝑦𝑦  =  (2𝑁𝑁𝑁𝑁 +  𝑁𝑁𝑁𝑁𝑊𝑊𝑊𝑊 +  𝑁𝑁𝑁𝑁𝐸𝐸𝐸𝐸)  − (2𝑆𝑆𝑆𝑆 +  𝑆𝑆𝑆𝑆𝑊𝑊𝑊𝑊 +  𝑆𝑆𝑆𝑆𝐸𝐸𝐸𝐸)                     (10) 

𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥  =  (2𝑊𝑊𝑊𝑊 +  𝑁𝑁𝑁𝑁𝑊𝑊𝑊𝑊 +  𝑆𝑆𝑆𝑆𝑊𝑊𝑊𝑊)  − (2𝐸𝐸𝐸𝐸 +  𝑁𝑁𝑁𝑁𝐸𝐸𝐸𝐸 +  𝑆𝑆𝑆𝑆𝐸𝐸𝐸𝐸)                     (11) 
 

 
<그림 4> GL-CCCM의 공간적 합성곱 필터 [7] 

 

 CCCM with Multiple Downsampling Filter  

Multiple Downsampling Fliter 기반 CCCM은 다운샘플링 필터를 적용해 생성된 휘도 신호

를 선형결합하여 색차 신호를 예측하는 방식이다[8]. 이때, <그림 5>에 제시된 다운샘플링 

필터 𝐻𝐻𝐻𝐻, 𝐺𝐺𝐺𝐺1, 𝐺𝐺𝐺𝐺2, 𝐺𝐺𝐺𝐺3를 통해 생성된 휘도 신호들이 사용되며, 선형 모델은 식 (12)와 같이 정

의된다. 

 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑐𝑐𝑐𝑐0 ∗  𝐻𝐻𝐻𝐻(𝐶𝐶𝐶𝐶) +  𝑐𝑐𝑐𝑐1 ∗   𝐺𝐺𝐺𝐺1(𝐶𝐶𝐶𝐶) +  𝑐𝑐𝑐𝑐2 ∗   𝐺𝐺𝐺𝐺2(𝐶𝐶𝐶𝐶) +  𝑐𝑐𝑐𝑐3 ∗   𝐺𝐺𝐺𝐺3(𝐶𝐶𝐶𝐶) +  𝑐𝑐𝑐𝑐4 ∗   𝑃𝑃𝑃𝑃�𝐻𝐻𝐻𝐻(𝐶𝐶𝐶𝐶)� 
+ 𝑐𝑐𝑐𝑐5 ∗   𝑃𝑃𝑃𝑃(𝐺𝐺𝐺𝐺1(𝐶𝐶𝐶𝐶))  +  𝑐𝑐𝑐𝑐6 ∗  𝑃𝑃𝑃𝑃(𝐺𝐺𝐺𝐺2(𝐶𝐶𝐶𝐶))  +  𝑐𝑐𝑐𝑐7 ∗  𝑋𝑋𝑋𝑋 +  𝑐𝑐𝑐𝑐8 ∗  𝑌𝑌𝑌𝑌 +  𝑐𝑐𝑐𝑐9 ∗  𝐵𝐵𝐵𝐵           (12) 

 

 
<그림 5> CCCM에 적용되는 다운샘플링 필터[8] 

 

 Local-Boosting Cross-Component Prediction 
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이웃 샘플을 기울기 및 위치 정보로 대체하여 사용한다. 

GL-CCCM의 예측식은 식 (9)와 같이 정의된다. 여기서 

Gy와 Gx는 각각 수직 및 수평 기울기로, <그림 4>와 같이 

주변 8개 휘도 샘플을 이용하여 식 (10)과 식 (11)과 같이 

계산된다. 또한, Y와 X는 중심 휘도 샘플(C)의 공간 좌표

이며, 나머지 입력 항(P, B) 및 필터 계수 계산 방식, 참조 

영역 설정은 CCCM과 동일한 절차를 따른다.

7) CCCM with Multiple Downsampling Filter 

Multiple Downsampling Fliter 기반 CCCM은 다운샘

플링 필터를 적용해 생성된 휘도 신호를 선형결합하여 색

차 신호를 예측하는 방식이다[8]. 이때, <그림 5>에 제시된 

다운샘플링 필터 H, G1, G2, G3를 통해 생성된 휘도 신

호들이 사용되며, 선형 모델은 식 (12)와 같이 정의된다.

8) �Local-Boosting Cross-Component 

Prediction

Local-Boosting Cross-Component Prediction (LB-

CCP)은 MMLM 또는 다중 모델 기반 CCCM으로 생성된 

색차 예측값에 대해 3×3 저역통과(low-pass) 필터를 적

용하여 예측을 보정하는 방식이다. 블록의 상단 또는 좌측 

경계에 위치한 샘플은 예측 샘플과 함께 인접 복원 샘플을 

필터링에 사용하며, 블록 내부 샘플은 예측 샘플만을 사용

하되 필요한 경우 패딩을 적용한다.

9) Cross-Component Prediction merge mode

CCP merge 모드는 화면내 색차 성분 예측에서 CCLM, 

CCCM, GLM 등 CCP 모드를 merge 후보로 구성하여 사

용하는 기술이다. CCP merge 후보 리스트는 공간적 인

접 후보, 비인접 후보, 시간적 후보, shifted temporal 후

보, 그리고 최근 부호화된 모델을 저장하는 히스토리 기반 

후보로 구성된다. 리스트가 충분히 채워지지 않은 경우에

는 기본(default) CCLM 파라미터를 사용한 후보가 추가

된다. 구성된 후보 리스트는 중복 모델을 제거한 후, 현재 

블록의 참조 템플릿을 기반으로 계산된 SATD 비용에 따

라 재정렬된다. CCP merge 모드가 선택되면 해당 후보의 

인덱스가 신호화되며, 선택된 후보가 LB-CCP 속성을 가

지는 경우 해당 속성이 함께 적용된다. 또한 CCP merge 

모드에서는 융합(Fusion) 기능이 지원되며, CCP merge 

예측값을 MM-CCCM 또는 DIMD 기반 예측과 가중합 방
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공간 이웃 샘플을 기울기 및 위치 정보로 대체하여 사용한다. GL-CCCM의 예측식은 식 (9)

와 같이 정의된다. 여기서 𝐺𝐺𝐺𝐺𝑦𝑦𝑦𝑦와 𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥는 각각 수직 및 수평 기울기로, <그림 4>와 같이 주변 

8개 휘도 샘플을 이용하여 식(10)과 식 (11)과 같이 계산된다. 또한, 𝑌𝑌𝑌𝑌와 𝑋𝑋𝑋𝑋는 중심 휘도 샘

플(C)의 공간 좌표이며, 나머지 입력 항(P, B) 및 필터 계수 계산 방식, 참조 영역 설정은 

CCCM과 동일한 절차를 따른다. 
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𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑐𝑐𝑐𝑐0 ∗  𝐻𝐻𝐻𝐻(𝐶𝐶𝐶𝐶) +  𝑐𝑐𝑐𝑐1 ∗   𝐺𝐺𝐺𝐺1(𝐶𝐶𝐶𝐶) +  𝑐𝑐𝑐𝑐2 ∗   𝐺𝐺𝐺𝐺2(𝐶𝐶𝐶𝐶) +  𝑐𝑐𝑐𝑐3 ∗   𝐺𝐺𝐺𝐺3(𝐶𝐶𝐶𝐶) +  𝑐𝑐𝑐𝑐4 ∗   𝑃𝑃𝑃𝑃�𝐻𝐻𝐻𝐻(𝐶𝐶𝐶𝐶)� 
+ 𝑐𝑐𝑐𝑐5 ∗   𝑃𝑃𝑃𝑃(𝐺𝐺𝐺𝐺1(𝐶𝐶𝐶𝐶))  +  𝑐𝑐𝑐𝑐6 ∗  𝑃𝑃𝑃𝑃(𝐺𝐺𝐺𝐺2(𝐶𝐶𝐶𝐶))  +  𝑐𝑐𝑐𝑐7 ∗  𝑋𝑋𝑋𝑋 +  𝑐𝑐𝑐𝑐8 ∗  𝑌𝑌𝑌𝑌 +  𝑐𝑐𝑐𝑐9 ∗  𝐵𝐵𝐵𝐵           (12) 

 

 
<그림 5> CCCM에 적용되는 다운샘플링 필터[8] 

 

 Local-Boosting Cross-Component Prediction 

Local-Boosting Cross-Component Prediction (LB-CCP)은 MMLM 또는 다중 모델 기반 

 
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑐𝑐𝑐𝑐0𝐶𝐶𝐶𝐶 +  𝑐𝑐𝑐𝑐1𝑁𝑁𝑁𝑁 +  𝑐𝑐𝑐𝑐2𝑆𝑆𝑆𝑆 +  𝑐𝑐𝑐𝑐3𝐸𝐸𝐸𝐸 +  𝑐𝑐𝑐𝑐4𝑊𝑊𝑊𝑊 +  

𝑐𝑐𝑐𝑐5𝑃𝑃𝑃𝑃(𝐶𝐶𝐶𝐶)  +  𝑐𝑐𝑐𝑐6𝑃𝑃𝑃𝑃(𝑁𝑁𝑁𝑁) +  𝑐𝑐𝑐𝑐7𝑃𝑃𝑃𝑃(𝑆𝑆𝑆𝑆)  +  𝑐𝑐𝑐𝑐8𝑃𝑃𝑃𝑃(𝑊𝑊𝑊𝑊)  +  𝑐𝑐𝑐𝑐9𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸) +  𝑐𝑐𝑐𝑐10𝐵𝐵𝐵𝐵                 (8) 

 

 Gradient and Location-based CCCM 

Gradient and Location-based CCCM (GL-CCCM)은 공간 휘도 샘플을 색차값으로 매핑하기 

위해 하나의 공간 휘도 샘플(C), 두 개의 기울기 값(𝐺𝐺𝐺𝐺𝑦𝑦𝑦𝑦, 𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥 ), 두 개의 위치 정보(𝑌𝑌𝑌𝑌, 𝑋𝑋𝑋𝑋), 비선형 

항, 그리고 편향 항을 입력으로 사용하는 필터 기반 예측 방법이다[7]. GL-CCCM은 CCCM의 

공간 이웃 샘플을 기울기 및 위치 정보로 대체하여 사용한다. GL-CCCM의 예측식은 식 (9)

와 같이 정의된다. 여기서 𝐺𝐺𝐺𝐺𝑦𝑦𝑦𝑦와 𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥는 각각 수직 및 수평 기울기로, <그림 4>와 같이 주변 

8개 휘도 샘플을 이용하여 식(10)과 식 (11)과 같이 계산된다. 또한, 𝑌𝑌𝑌𝑌와 𝑋𝑋𝑋𝑋는 중심 휘도 샘

플(C)의 공간 좌표이며, 나머지 입력 항(P, B) 및 필터 계수 계산 방식, 참조 영역 설정은 

CCCM과 동일한 절차를 따른다. 

 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑐𝑐𝑐𝑐0𝐶𝐶𝐶𝐶 + 𝑐𝑐𝑐𝑐1𝐺𝐺𝐺𝐺𝑦𝑦𝑦𝑦  + 𝑐𝑐𝑐𝑐2𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥   + 𝑐𝑐𝑐𝑐3𝑌𝑌𝑌𝑌 +  𝑐𝑐𝑐𝑐4𝑋𝑋𝑋𝑋 + 𝑐𝑐𝑐𝑐5𝑃𝑃𝑃𝑃 + 𝑐𝑐𝑐𝑐6𝐵𝐵𝐵𝐵          (9) 

𝐺𝐺𝐺𝐺𝑦𝑦𝑦𝑦  =  (2𝑁𝑁𝑁𝑁 +  𝑁𝑁𝑁𝑁𝑊𝑊𝑊𝑊 +  𝑁𝑁𝑁𝑁𝐸𝐸𝐸𝐸)  − (2𝑆𝑆𝑆𝑆 +  𝑆𝑆𝑆𝑆𝑊𝑊𝑊𝑊 +  𝑆𝑆𝑆𝑆𝐸𝐸𝐸𝐸)                     (10) 

𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥  =  (2𝑊𝑊𝑊𝑊 +  𝑁𝑁𝑁𝑁𝑊𝑊𝑊𝑊 +  𝑆𝑆𝑆𝑆𝑊𝑊𝑊𝑊)  − (2𝐸𝐸𝐸𝐸 +  𝑁𝑁𝑁𝑁𝐸𝐸𝐸𝐸 +  𝑆𝑆𝑆𝑆𝐸𝐸𝐸𝐸)                     (11) 
 

 
<그림 4> GL-CCCM의 공간적 합성곱 필터 [7] 

 

 CCCM with Multiple Downsampling Filter  

Multiple Downsampling Fliter 기반 CCCM은 다운샘플링 필터를 적용해 생성된 휘도 신호

를 선형결합하여 색차 신호를 예측하는 방식이다[8]. 이때, <그림 5>에 제시된 다운샘플링 

필터 𝐻𝐻𝐻𝐻, 𝐺𝐺𝐺𝐺1, 𝐺𝐺𝐺𝐺2, 𝐺𝐺𝐺𝐺3를 통해 생성된 휘도 신호들이 사용되며, 선형 모델은 식 (12)와 같이 정

의된다. 
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𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑐𝑐𝑐𝑐0𝐶𝐶𝐶𝐶 + 𝑐𝑐𝑐𝑐1𝐺𝐺𝐺𝐺𝑦𝑦𝑦𝑦  + 𝑐𝑐𝑐𝑐2𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥   + 𝑐𝑐𝑐𝑐3𝑌𝑌𝑌𝑌 +  𝑐𝑐𝑐𝑐4𝑋𝑋𝑋𝑋 + 𝑐𝑐𝑐𝑐5𝑃𝑃𝑃𝑃 + 𝑐𝑐𝑐𝑐6𝐵𝐵𝐵𝐵          (9) 

𝐺𝐺𝐺𝐺𝑦𝑦𝑦𝑦  =  (2𝑁𝑁𝑁𝑁 +  𝑁𝑁𝑁𝑁𝑊𝑊𝑊𝑊 +  𝑁𝑁𝑁𝑁𝐸𝐸𝐸𝐸)  − (2𝑆𝑆𝑆𝑆 +  𝑆𝑆𝑆𝑆𝑊𝑊𝑊𝑊 +  𝑆𝑆𝑆𝑆𝐸𝐸𝐸𝐸)                     (10) 

𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥  =  (2𝑊𝑊𝑊𝑊 +  𝑁𝑁𝑁𝑁𝑊𝑊𝑊𝑊 +  𝑆𝑆𝑆𝑆𝑊𝑊𝑊𝑊)  − (2𝐸𝐸𝐸𝐸 +  𝑁𝑁𝑁𝑁𝐸𝐸𝐸𝐸 +  𝑆𝑆𝑆𝑆𝐸𝐸𝐸𝐸)                     (11) 
 

 
<그림 4> GL-CCCM의 공간적 합성곱 필터 [7] 
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를 선형결합하여 색차 신호를 예측하는 방식이다[8]. 이때, <그림 5>에 제시된 다운샘플링 

필터 𝐻𝐻𝐻𝐻, 𝐺𝐺𝐺𝐺1, 𝐺𝐺𝐺𝐺2, 𝐺𝐺𝐺𝐺3를 통해 생성된 휘도 신호들이 사용되며, 선형 모델은 식 (12)와 같이 정
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𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑐𝑐𝑐𝑐0 ∗  𝐻𝐻𝐻𝐻(𝐶𝐶𝐶𝐶) +  𝑐𝑐𝑐𝑐1 ∗   𝐺𝐺𝐺𝐺1(𝐶𝐶𝐶𝐶) +  𝑐𝑐𝑐𝑐2 ∗   𝐺𝐺𝐺𝐺2(𝐶𝐶𝐶𝐶) +  𝑐𝑐𝑐𝑐3 ∗   𝐺𝐺𝐺𝐺3(𝐶𝐶𝐶𝐶) +  𝑐𝑐𝑐𝑐4 ∗   𝑃𝑃𝑃𝑃�𝐻𝐻𝐻𝐻(𝐶𝐶𝐶𝐶)� 
+ 𝑐𝑐𝑐𝑐5 ∗   𝑃𝑃𝑃𝑃(𝐺𝐺𝐺𝐺1(𝐶𝐶𝐶𝐶))  +  𝑐𝑐𝑐𝑐6 ∗  𝑃𝑃𝑃𝑃(𝐺𝐺𝐺𝐺2(𝐶𝐶𝐶𝐶))  +  𝑐𝑐𝑐𝑐7 ∗  𝑋𝑋𝑋𝑋 +  𝑐𝑐𝑐𝑐8 ∗  𝑌𝑌𝑌𝑌 +  𝑐𝑐𝑐𝑐9 ∗  𝐵𝐵𝐵𝐵           (12) 

 

 
<그림 5> CCCM에 적용되는 다운샘플링 필터[8] 
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Local-Boosting Cross-Component Prediction (LB-CCP)은 MMLM 또는 다중 모델 기반 

(9)

(10)

(11)

 
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑐𝑐𝑐𝑐0𝐶𝐶𝐶𝐶 +  𝑐𝑐𝑐𝑐1𝑁𝑁𝑁𝑁 +  𝑐𝑐𝑐𝑐2𝑆𝑆𝑆𝑆 +  𝑐𝑐𝑐𝑐3𝐸𝐸𝐸𝐸 +  𝑐𝑐𝑐𝑐4𝑊𝑊𝑊𝑊 +  

𝑐𝑐𝑐𝑐5𝑃𝑃𝑃𝑃(𝐶𝐶𝐶𝐶)  +  𝑐𝑐𝑐𝑐6𝑃𝑃𝑃𝑃(𝑁𝑁𝑁𝑁) +  𝑐𝑐𝑐𝑐7𝑃𝑃𝑃𝑃(𝑆𝑆𝑆𝑆)  +  𝑐𝑐𝑐𝑐8𝑃𝑃𝑃𝑃(𝑊𝑊𝑊𝑊)  +  𝑐𝑐𝑐𝑐9𝑃𝑃𝑃𝑃(𝐸𝐸𝐸𝐸) +  𝑐𝑐𝑐𝑐10𝐵𝐵𝐵𝐵                 (8) 

 

 Gradient and Location-based CCCM 

Gradient and Location-based CCCM (GL-CCCM)은 공간 휘도 샘플을 색차값으로 매핑하기 

위해 하나의 공간 휘도 샘플(C), 두 개의 기울기 값(𝐺𝐺𝐺𝐺𝑦𝑦𝑦𝑦, 𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥 ), 두 개의 위치 정보(𝑌𝑌𝑌𝑌, 𝑋𝑋𝑋𝑋), 비선형 

항, 그리고 편향 항을 입력으로 사용하는 필터 기반 예측 방법이다[7]. GL-CCCM은 CCCM의 

공간 이웃 샘플을 기울기 및 위치 정보로 대체하여 사용한다. GL-CCCM의 예측식은 식 (9)

와 같이 정의된다. 여기서 𝐺𝐺𝐺𝐺𝑦𝑦𝑦𝑦와 𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥는 각각 수직 및 수평 기울기로, <그림 4>와 같이 주변 

8개 휘도 샘플을 이용하여 식(10)과 식 (11)과 같이 계산된다. 또한, 𝑌𝑌𝑌𝑌와 𝑋𝑋𝑋𝑋는 중심 휘도 샘

플(C)의 공간 좌표이며, 나머지 입력 항(P, B) 및 필터 계수 계산 방식, 참조 영역 설정은 

CCCM과 동일한 절차를 따른다. 

 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑐𝑐𝑐𝑐0𝐶𝐶𝐶𝐶 + 𝑐𝑐𝑐𝑐1𝐺𝐺𝐺𝐺𝑦𝑦𝑦𝑦  + 𝑐𝑐𝑐𝑐2𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥   + 𝑐𝑐𝑐𝑐3𝑌𝑌𝑌𝑌 +  𝑐𝑐𝑐𝑐4𝑋𝑋𝑋𝑋 + 𝑐𝑐𝑐𝑐5𝑃𝑃𝑃𝑃 + 𝑐𝑐𝑐𝑐6𝐵𝐵𝐵𝐵          (9) 

𝐺𝐺𝐺𝐺𝑦𝑦𝑦𝑦  =  (2𝑁𝑁𝑁𝑁 +  𝑁𝑁𝑁𝑁𝑊𝑊𝑊𝑊 +  𝑁𝑁𝑁𝑁𝐸𝐸𝐸𝐸)  − (2𝑆𝑆𝑆𝑆 +  𝑆𝑆𝑆𝑆𝑊𝑊𝑊𝑊 +  𝑆𝑆𝑆𝑆𝐸𝐸𝐸𝐸)                     (10) 

𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥  =  (2𝑊𝑊𝑊𝑊 +  𝑁𝑁𝑁𝑁𝑊𝑊𝑊𝑊 +  𝑆𝑆𝑆𝑆𝑊𝑊𝑊𝑊)  − (2𝐸𝐸𝐸𝐸 +  𝑁𝑁𝑁𝑁𝐸𝐸𝐸𝐸 +  𝑆𝑆𝑆𝑆𝐸𝐸𝐸𝐸)                     (11) 
 

 
<그림 4> GL-CCCM의 공간적 합성곱 필터 [7] 

 

 CCCM with Multiple Downsampling Filter  

Multiple Downsampling Fliter 기반 CCCM은 다운샘플링 필터를 적용해 생성된 휘도 신호

를 선형결합하여 색차 신호를 예측하는 방식이다[8]. 이때, <그림 5>에 제시된 다운샘플링 

필터 𝐻𝐻𝐻𝐻, 𝐺𝐺𝐺𝐺1, 𝐺𝐺𝐺𝐺2, 𝐺𝐺𝐺𝐺3를 통해 생성된 휘도 신호들이 사용되며, 선형 모델은 식 (12)와 같이 정

의된다. 

 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑐𝑐𝑐𝑐0 ∗  𝐻𝐻𝐻𝐻(𝐶𝐶𝐶𝐶) +  𝑐𝑐𝑐𝑐1 ∗   𝐺𝐺𝐺𝐺1(𝐶𝐶𝐶𝐶) +  𝑐𝑐𝑐𝑐2 ∗   𝐺𝐺𝐺𝐺2(𝐶𝐶𝐶𝐶) +  𝑐𝑐𝑐𝑐3 ∗   𝐺𝐺𝐺𝐺3(𝐶𝐶𝐶𝐶) +  𝑐𝑐𝑐𝑐4 ∗   𝑃𝑃𝑃𝑃�𝐻𝐻𝐻𝐻(𝐶𝐶𝐶𝐶)� 
+ 𝑐𝑐𝑐𝑐5 ∗   𝑃𝑃𝑃𝑃(𝐺𝐺𝐺𝐺1(𝐶𝐶𝐶𝐶))  +  𝑐𝑐𝑐𝑐6 ∗  𝑃𝑃𝑃𝑃(𝐺𝐺𝐺𝐺2(𝐶𝐶𝐶𝐶))  +  𝑐𝑐𝑐𝑐7 ∗  𝑋𝑋𝑋𝑋 +  𝑐𝑐𝑐𝑐8 ∗  𝑌𝑌𝑌𝑌 +  𝑐𝑐𝑐𝑐9 ∗  𝐵𝐵𝐵𝐵           (12) 
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Local-Boosting Cross-Component Prediction (LB-CCP)은 MMLM 또는 다중 모델 기반 
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위해 하나의 공간 휘도 샘플(C), 두 개의 기울기 값(𝐺𝐺𝐺𝐺𝑦𝑦𝑦𝑦, 𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥 ), 두 개의 위치 정보(𝑌𝑌𝑌𝑌, 𝑋𝑋𝑋𝑋), 비선형 

항, 그리고 편향 항을 입력으로 사용하는 필터 기반 예측 방법이다[7]. GL-CCCM은 CCCM의 

공간 이웃 샘플을 기울기 및 위치 정보로 대체하여 사용한다. GL-CCCM의 예측식은 식 (9)

와 같이 정의된다. 여기서 𝐺𝐺𝐺𝐺𝑦𝑦𝑦𝑦와 𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥는 각각 수직 및 수평 기울기로, <그림 4>와 같이 주변 

8개 휘도 샘플을 이용하여 식(10)과 식 (11)과 같이 계산된다. 또한, 𝑌𝑌𝑌𝑌와 𝑋𝑋𝑋𝑋는 중심 휘도 샘

플(C)의 공간 좌표이며, 나머지 입력 항(P, B) 및 필터 계수 계산 방식, 참조 영역 설정은 

CCCM과 동일한 절차를 따른다. 

 

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑐𝑐𝑐𝑐0𝐶𝐶𝐶𝐶 + 𝑐𝑐𝑐𝑐1𝐺𝐺𝐺𝐺𝑦𝑦𝑦𝑦  + 𝑐𝑐𝑐𝑐2𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥   + 𝑐𝑐𝑐𝑐3𝑌𝑌𝑌𝑌 +  𝑐𝑐𝑐𝑐4𝑋𝑋𝑋𝑋 + 𝑐𝑐𝑐𝑐5𝑃𝑃𝑃𝑃 + 𝑐𝑐𝑐𝑐6𝐵𝐵𝐵𝐵          (9) 

𝐺𝐺𝐺𝐺𝑦𝑦𝑦𝑦  =  (2𝑁𝑁𝑁𝑁 +  𝑁𝑁𝑁𝑁𝑊𝑊𝑊𝑊 +  𝑁𝑁𝑁𝑁𝐸𝐸𝐸𝐸)  − (2𝑆𝑆𝑆𝑆 +  𝑆𝑆𝑆𝑆𝑊𝑊𝑊𝑊 +  𝑆𝑆𝑆𝑆𝐸𝐸𝐸𝐸)                     (10) 

𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥  =  (2𝑊𝑊𝑊𝑊 +  𝑁𝑁𝑁𝑁𝑊𝑊𝑊𝑊 +  𝑆𝑆𝑆𝑆𝑊𝑊𝑊𝑊)  − (2𝐸𝐸𝐸𝐸 +  𝑁𝑁𝑁𝑁𝐸𝐸𝐸𝐸 +  𝑆𝑆𝑆𝑆𝐸𝐸𝐸𝐸)                     (11) 
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를 선형결합하여 색차 신호를 예측하는 방식이다[8]. 이때, <그림 5>에 제시된 다운샘플링 

필터 𝐻𝐻𝐻𝐻, 𝐺𝐺𝐺𝐺1, 𝐺𝐺𝐺𝐺2, 𝐺𝐺𝐺𝐺3를 통해 생성된 휘도 신호들이 사용되며, 선형 모델은 식 (12)와 같이 정

의된다. 
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<그림 5> CCCM에 적용되는 다운샘플링 필터[8] 
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Gradient and Location-based CCCM (GL-CCCM)은 공간 휘도 샘플을 색차값으로 매핑하기 
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항, 그리고 편향 항을 입력으로 사용하는 필터 기반 예측 방법이다[7]. GL-CCCM은 CCCM의 

공간 이웃 샘플을 기울기 및 위치 정보로 대체하여 사용한다. GL-CCCM의 예측식은 식 (9)

와 같이 정의된다. 여기서 𝐺𝐺𝐺𝐺𝑦𝑦𝑦𝑦와 𝐺𝐺𝐺𝐺𝑥𝑥𝑥𝑥는 각각 수직 및 수평 기울기로, <그림 4>와 같이 주변 
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식으로 결합할 수 있다. Fusion은 첫 번째 merge 후보가 

선택된 경우에만 적용되며, fusion 적용 여부와 타입은 별

도의 플래그로 신호화된다. 인코더는 CCP merge 후보 외

에도 색차 intra 모드에 대해 SATD 또는 SAD 기반 평가

를 수행하여, 비용 차이가 작은 후보들을 RD 최적화 대상

으로 선택한다.

10) Decoder-Derived CCP

Decoder-Derived CCP (DD-CCP) 모드는 디코더 측에

서 다양한 CCP 예측 모드를 평가하여 최적의 예측 모드를 

선택하는 방식이다. 우선 CCLM, CCCM, GL-CCCM, 그리

고 LB-CCP가 적용된 CCCM 등으로 구성된 CCP 후보 리

스트를 생성하고, 각 후보에 대해 현재 색차 CU 인접 영역

의 템플릿을 이용해 예측값과 복원 샘플 간의 오차로 템플

릿 비용을 계산한다. 디코더는 계산된 템플릿 비용을 비교

하여 가장 적합한 CCP 모드를 선택한다. 또한 CCP 모드

뿐 아니라 fusion 후보도 고려되며, fusion 후보는 템플릿 

비용 기준으로 정렬된 CCP 후보 리스트에서 두 개의 CCP 

모드를 조합하여 생성된다. 선택된 CCP 모드와 fusion 적

용 여부는 각각 mode flag와 fusion flag를 통해 결정된다.

2. Non-Cross  Component  Prediction

ECM은 색차 성분의 부호화 효율을 향상시키기 위해 휘

도 성분과의 상관관계에 의존하지 않는 Non-CCP 예측 

기법을 도입하였으며, 이는 CCLM이나 CCCM과 같은 기

존 CCP 계열 방식과 달리 색차 성분 자체의 공간적 특성

을 분석하여 예측 정확도를 향상시키는 것을 목표로 한다. 

또한 휘도 예측에서 효율성이 입증된 Decoder-side Intra 

Mode Derivation (DIMD) 및 Template-based Multiple 

Reference Line (TMRL) 예측 기술을 색차 성분으로 확

장함으로써 Non-CCP 기반 예측 성능을 크게 향상시켰

다. 본 절에서는 ECM에 포함된 주요 Non-CCP 기술을 

설명한다.

1) Direct Block Vector

Direct Block Vector (DBV)는 휘도 예측에 사용되는 

BV 정보를 색차 영역으로 확장하여 공간적 이동 정보를 

활용하는 기법이다[9]. 색차 블록은 별도의 BV를 독립적

으로 부호화하지 않으므로, 현재 블록에 대응되는 휘도 영

역이 IntraTMP 또는 IBC 모드로 부호화되어 유효한 휘

도 블록 벡터(BVL)를 갖는 경우에만 DBV 모드를 적용

할 수 있다. BVL은 색차 샘플링 구조에 따라 스케일링되

어 색차 블록 벡터(BVC)로 변환되며, 최종적으로 BVC를 

참조하여 해당 복원 샘플을 현재 색차 블록의 예측 신호

로 활용한다.

2) �Chroma Decoder-side Intra Mode 

Derivation

Chroma DIMD는 휘도 성분에서 부호화 효율이 검증된 

DIMD 예측 기법을 색차 성분으로 확장한 방식으로, 추가

적인 시그널링 없이 디코더에서 색차 블록의 화면내 예측 

모드를 직접 유도한다[10]. Chroma DIMD는 현재 색차 

블록의 주변 재구성된 색차 샘플뿐만 아니라 동일 위치에 

대응하는 휘도 블록의 재구성 샘플이 갖는 방향성 정보까

지 융합하여 활용하는 특징을 갖는다. 구체적으로 예측 모

드를 도출하기 위해 색차 블록의 두 번째 및 세 번째 라인

에 위치한 재구성된 색차 샘플과 이에 대응되는 휘도 블록

의 샘플을 참조 템플릿으로 사용한다. 각 템플릿에 Sobel 

필터를 적용하여 기울기를 계산하고, 각도와 크기 정보를 

추출하여 Histogram of Gradient (HoG)를 구성한다. 이

때 휘도와 색차 성분의 기울기 정보를 하나의 HoG에 누

적하여 방향성을 평가하며, 진폭이 가장 큰 방향성 모드를 

현재 색차 블록의 예측 모드로 선택한다. 유도된 모드가 

기존 Derived Mode (DM)와 동일한 경우에는 진폭이 두 

번째로 큰 방향성 모드를 선택한다.

3) �Chroma Template-based Multiple 

Reference Line

Chroma TMRL은 휘도 예측에 사용되던 TMRL을 색차 
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예측으로 확장한 기법으로, 다중 참조 라인과 화면내 예측 

모드의 조합 중 최적의 조합을 선택하여 색차 블록을 예측

한다[11]. 참조 라인으로는 {1, 3, 5}번을 사용하며, 각 라

인에 8개의 화면내 예측 모드를 결합하여 총 24개의 초기 

조합 후보를 구성한다. 예측 모드 후보에는 DM, Chroma 

DIMD, DC 등의 Non-CCP 색차 모드와 현재 색차 블록 

및 대응 휘도 블록의 주변으로부터 유도된 모드가 포함된

다. 모든 후보 조합에 대한 비용 계산 후, 비용이 가장 작

은 6개의 조합이 선택되며, Chroma TMRL 모드가 활성화

되면 선택된 조합의 인덱스를 시그널링한다.

4) Non-CCP Chroma Mode List

Non-CCP Chroma Mode List는 CCP 기반 모드를 제

외한 다양한 화면내 예측 모드로 구성되며, 템플릿 비용

을 기반으로 적응적으로 재정렬하여 현재 색차 블록의 예

측 모드를 결정한다[12]. 리스트는 DBV, DM, chroma 

DIMD, Planar 등과 같은 기본 예측 모드와 현재 색차 블

록 및 대응 휘도 블록의 주변 위치에서 유도된 예측 모드

와 BV로 구성된다. 구성된 후보들은 대응되는 휘도 블록

과 색차 블록의 템플릿 영역 예측에 사용되며, 예측 신호

와 복원 신호 간의 오차는 SATD 및 SAD 비용으로 계산된

다. 템플릿 비용을 기준으로 재정렬된 리스트 중 상위 N

개의 모드만 색차 예측에 사용되며, N은 대응 휘도 블록

의 다섯 개 위치 중 하나라도 IntraTMP 또는 IBC 모드로 

부호화된 경우 7, 그렇지 않은 경우 6으로 설정된다. 인코

더는 재정렬된 리스트에서 선택된 최종 모드의 인덱스를 

시그널링한다.

Ⅲ. 블록 벡터 기반 화면내 부호화 기술

1. Intra Block Copy

IBC는 현재 프레임 내에서 현재 블록과 유사한 참조 블

록을 탐색하여 예측 블록으로 사용하는 화면내 예측 기법

이다. ECM에서는 IBC의 예측 성능과 활용도를 향상시

키기 위해 기존 화면간 예측 기술을 IBC 예측으로 확장

하고, 블록 벡터 정밀도를 1/4-pel 수준으로 확장하였으

며, 참조 영역 또한 현재 재구성된 샘플 전체로 확장하였

다. 본 절에서는 ECM에 채택된 IBC 예측 기법에 대해 소

개하고자 한다.

1) IBC with Template Matching

IBC with Template Matching (IBC-TM)은 기존 화

면간 예측에서 사용되는 템플릿 매칭 기반 움직임 벡터

(Motion Vector, MV) 도출 방식을 IBC 예측으로 확장한 

기법으로, 현재 블록의 상단 및 좌측 4개 라인을 템플릿으

로 사용하여 매칭 오차가 최소가 되는 위치를 탐색함으로

써 초기 BV를 정제한다[13]. 후보 간 움직임 거리 기반 중

복 제거 후, 8-point 다이아몬드 탐색과 4-point 크로스 탐

색을 수행하여 정제된 BV를 도출하며, 해당 모드 선택 시 

TM-Merge 플래그를 시그널링한다. IBC-TM AMVP 모드

에서는 IBC-TM Merge 리스트로부터 최대 3개의 후보를 

정제한 뒤, 템플릿 매칭 비용에 따라 정렬된 상위 2개 후보

만을 블록 벡터 예측자(Block Vector Predictor, BVP)로 

사용한다. 템플릿 매칭 기반 정제는 IBC 참조 영역 내로 

제한되며, 탐색 보폭은 IBC-TM Merge에서는 정수 단위, 

IBC-TM AMVP에서는 정수 또는 4-pel 단위로 제한된다.

2) Reconstructed-Reordered IBC

Reconstructed-Reordered IBC (RR-IBC) 모드는 IBC

로 부호화된 블록에 대해 수평 반전과 수직 반전의 두 가

지 반전 타입을 지원하는 예측 모드이다[14]. IBC AMVP 

모드에서는 재구성 블록의 반전 여부를 나타내는 플래그

를 시그널링하며, 반전이 적용된 경우 반전 타입을 지정하

는 플래그가 추가로 시그널링한다. 반면 IBC Merge 모드

에서는 주변 블록으로부터 플래그를 상속하여 반전 여부

와 타입이 결정된다. 수평 반전이 적용되는 경우 BV 또는 

BVP의 y 성분을 시그널링하지 않으며, 수직 반전이 적용

되는 경우에는 x 성분을 시그널링하지 않는다. 또한 대칭
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성을 효과적으로 활용하기 위해, 이웃 블록의 반전 타입을 

고려한 flip-aware BV 보정 기법이 BV 후보에 적용된다. 

예를 들어 <그림 6>과 같이, 이웃 블록의 플립 타입에 따

라 BV를 보정하여 현재 블록의 BV를 유도한다. 이웃 블

록이 수평 반전으로 부호화된 경우, 식 (13)과 같이 현재 

블록의 수평 BV 성분 

BVP의 y 성분을 시그널링 하지 않으며, 수직 반전이 적용되는 경우에는 x 성분을 시그널링 

하지 않는다. 또한 대칭성을 효과적으로 활용하기 위해, 이웃 블록의 반전 타입을 고려한 

flip-aware BV 보정 기법이 BV 후보에 적용된다. 예를 들어 <그림 6>과 같이, 이웃 블록의 

플립 타입에 따라 BV를 보정하여 현재 블록의 BV를 유도한다. 이웃 블록이 수평 반전으로 

부호화 된 경우, 식 (13)와 같이 현재 블록의 수평 BV 성분 𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ 는 이웃 블록 BV의 수평 

성분𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ 에 모션 시프트를 더해 계산한다.  

 

𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ = 2(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑥𝑥𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) + 𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ          (13) 

 

동일한 원리로 이웃 블록이 수직 반전된 경우, 식 (14)와 같이 현재 블록의 수직 BV 성분 

𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣𝑣𝑣 는 이웃 블록 BV의 수직 성분 𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑣𝑣𝑣𝑣 에 모션 시프트를 더해 계산한다. 

 

𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣𝑣𝑣 = 2(𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑦𝑦𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) + 𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑣𝑣𝑣𝑣         (14) 

 

여기서 (𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)는 플립이 적용된 이웃 블록의 중심 위치를, (𝑥𝑥𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑦𝑦𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 )는 현재 블록의 중

심 위치를 나타낸다.  

 

 Block Vector Differences-Prediction 

Block Vector Differences Prediction (BVD Prediction)은 IBC 예측 모드에서의 BVD를 효율적

으로 부호화 하기 위해 제안된 기술로, 기존 화면간 예측에서 사용되는 MVD prediction을 

IBC 예측 모드로 확장한 것이다[15]. 구체적으로, 가능한 BVD의 부호 조합과 BVD 크기를 

표현하는 지수-골롬(Exponential-Golomb) 부호의 suffix 구간에서 가중치가 큰 상위 4개 

bin 조합을 결합하여 MV 후보를 생성한다. 생성된 MV 후보는 템플릿 매칭 기반으로 정렬

하고, 선택된 후보의 인덱스를 전송한다. 디코더는 동일한 절차를 이용해 후보 리스트를 

구성하여, 시그널링 된 인덱스를 이용해 최종 BVD를 복원한다. 

 

 Filtered IBC 

Filtered IBC (FIBC)는 현재 템플릿과 참조 템플릿 간의 MSE를 최소화하도록 유도된 선형, 

비선형 필터를 IBC 예측 신호에 적용하여 예측 오차를 감소시키는 기법이다[16]. 구체적으

로 CCCM과 동일한 7-tap 필터를 사용하며, 필터 계수는 현재 템플릿과 참조 템플릿 간의 

MSE를 최소화하는 값으로 도출된다. 비선형 항 𝑃𝑃𝑃𝑃는 중심 샘플 𝐶𝐶𝐶𝐶의 제곱 값을 이용하여 정

의되며, 컨텐츠의 비트 깊이에 맞게 정규화 된다. 또한 바이어스 항 B는 입력과 출력 간의 

평균적인 오프셋을 보상하기 위한 상수 항으로, 10비트 컨텐츠의 경우 휘도 중간 값인 512

로 설정된다. 해당 필터 기반 IBC 모드는 Merge 모드가 아닌 IBC 블록에 대한 추가 예측 

모드로만 사용되며, RR-IBC, IBC with Local Illumination Compensation (IBC-LIC), IBC 

Combination Intra block copy and Intra Prediction (IBC-CIIP) 모드와 함께 사용하지 않는다. 

IBC Merge 모드의 경우에는 Merge 후보 필터 모드 적용 유무를 나타내는 플래그는 IBC-

LIC 플래그 이전에 시그널링한다. 

 

는 이웃 블록 BV의 수평 성분 

BVP의 y 성분을 시그널링 하지 않으며, 수직 반전이 적용되는 경우에는 x 성분을 시그널링 

하지 않는다. 또한 대칭성을 효과적으로 활용하기 위해, 이웃 블록의 반전 타입을 고려한 

flip-aware BV 보정 기법이 BV 후보에 적용된다. 예를 들어 <그림 6>과 같이, 이웃 블록의 

플립 타입에 따라 BV를 보정하여 현재 블록의 BV를 유도한다. 이웃 블록이 수평 반전으로 

부호화 된 경우, 식 (13)와 같이 현재 블록의 수평 BV 성분 𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ 는 이웃 블록 BV의 수평 

성분𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ 에 모션 시프트를 더해 계산한다.  

 

𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ = 2(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑥𝑥𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) + 𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ          (13) 

 

동일한 원리로 이웃 블록이 수직 반전된 경우, 식 (14)와 같이 현재 블록의 수직 BV 성분 

𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣𝑣𝑣 는 이웃 블록 BV의 수직 성분 𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑣𝑣𝑣𝑣 에 모션 시프트를 더해 계산한다. 

 

𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣𝑣𝑣 = 2(𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑦𝑦𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) + 𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑣𝑣𝑣𝑣         (14) 

 

여기서 (𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)는 플립이 적용된 이웃 블록의 중심 위치를, (𝑥𝑥𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑦𝑦𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 )는 현재 블록의 중

심 위치를 나타낸다.  

 

 Block Vector Differences-Prediction 

Block Vector Differences Prediction (BVD Prediction)은 IBC 예측 모드에서의 BVD를 효율적

으로 부호화 하기 위해 제안된 기술로, 기존 화면간 예측에서 사용되는 MVD prediction을 

IBC 예측 모드로 확장한 것이다[15]. 구체적으로, 가능한 BVD의 부호 조합과 BVD 크기를 

표현하는 지수-골롬(Exponential-Golomb) 부호의 suffix 구간에서 가중치가 큰 상위 4개 

bin 조합을 결합하여 MV 후보를 생성한다. 생성된 MV 후보는 템플릿 매칭 기반으로 정렬

하고, 선택된 후보의 인덱스를 전송한다. 디코더는 동일한 절차를 이용해 후보 리스트를 

구성하여, 시그널링 된 인덱스를 이용해 최종 BVD를 복원한다. 

 

 Filtered IBC 

Filtered IBC (FIBC)는 현재 템플릿과 참조 템플릿 간의 MSE를 최소화하도록 유도된 선형, 

비선형 필터를 IBC 예측 신호에 적용하여 예측 오차를 감소시키는 기법이다[16]. 구체적으

로 CCCM과 동일한 7-tap 필터를 사용하며, 필터 계수는 현재 템플릿과 참조 템플릿 간의 

MSE를 최소화하는 값으로 도출된다. 비선형 항 𝑃𝑃𝑃𝑃는 중심 샘플 𝐶𝐶𝐶𝐶의 제곱 값을 이용하여 정

의되며, 컨텐츠의 비트 깊이에 맞게 정규화 된다. 또한 바이어스 항 B는 입력과 출력 간의 

평균적인 오프셋을 보상하기 위한 상수 항으로, 10비트 컨텐츠의 경우 휘도 중간 값인 512

로 설정된다. 해당 필터 기반 IBC 모드는 Merge 모드가 아닌 IBC 블록에 대한 추가 예측 

모드로만 사용되며, RR-IBC, IBC with Local Illumination Compensation (IBC-LIC), IBC 

Combination Intra block copy and Intra Prediction (IBC-CIIP) 모드와 함께 사용하지 않는다. 

IBC Merge 모드의 경우에는 Merge 후보 필터 모드 적용 유무를 나타내는 플래그는 IBC-

LIC 플래그 이전에 시그널링한다. 
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flip-aware BV 보정 기법이 BV 후보에 적용된다. 예를 들어 <그림 6>과 같이, 이웃 블록의 

플립 타입에 따라 BV를 보정하여 현재 블록의 BV를 유도한다. 이웃 블록이 수평 반전으로 
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으로 부호화 하기 위해 제안된 기술로, 기존 화면간 예측에서 사용되는 MVD prediction을 

IBC 예측 모드로 확장한 것이다[15]. 구체적으로, 가능한 BVD의 부호 조합과 BVD 크기를 

표현하는 지수-골롬(Exponential-Golomb) 부호의 suffix 구간에서 가중치가 큰 상위 4개 

bin 조합을 결합하여 MV 후보를 생성한다. 생성된 MV 후보는 템플릿 매칭 기반으로 정렬

하고, 선택된 후보의 인덱스를 전송한다. 디코더는 동일한 절차를 이용해 후보 리스트를 

구성하여, 시그널링 된 인덱스를 이용해 최종 BVD를 복원한다. 
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Filtered IBC (FIBC)는 현재 템플릿과 참조 템플릿 간의 MSE를 최소화하도록 유도된 선형, 

비선형 필터를 IBC 예측 신호에 적용하여 예측 오차를 감소시키는 기법이다[16]. 구체적으

로 CCCM과 동일한 7-tap 필터를 사용하며, 필터 계수는 현재 템플릿과 참조 템플릿 간의 

MSE를 최소화하는 값으로 도출된다. 비선형 항 𝑃𝑃𝑃𝑃는 중심 샘플 𝐶𝐶𝐶𝐶의 제곱 값을 이용하여 정

의되며, 컨텐츠의 비트 깊이에 맞게 정규화 된다. 또한 바이어스 항 B는 입력과 출력 간의 
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로 설정된다. 해당 필터 기반 IBC 모드는 Merge 모드가 아닌 IBC 블록에 대한 추가 예측 

모드로만 사용되며, RR-IBC, IBC with Local Illumination Compensation (IBC-LIC), IBC 

Combination Intra block copy and Intra Prediction (IBC-CIIP) 모드와 함께 사용하지 않는다. 

IBC Merge 모드의 경우에는 Merge 후보 필터 모드 적용 유무를 나타내는 플래그는 IBC-

LIC 플래그 이전에 시그널링한다. 
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하지 않는다. 또한 대칭성을 효과적으로 활용하기 위해, 이웃 블록의 반전 타입을 고려한 

flip-aware BV 보정 기법이 BV 후보에 적용된다. 예를 들어 <그림 6>과 같이, 이웃 블록의 

플립 타입에 따라 BV를 보정하여 현재 블록의 BV를 유도한다. 이웃 블록이 수평 반전으로 

부호화 된 경우, 식 (13)와 같이 현재 블록의 수평 BV 성분 𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ 는 이웃 블록 BV의 수평 

성분𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ 에 모션 시프트를 더해 계산한다.  

 

𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ = 2(𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑥𝑥𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) + 𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ          (13) 

 

동일한 원리로 이웃 블록이 수직 반전된 경우, 식 (14)와 같이 현재 블록의 수직 BV 성분 

𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣𝑣𝑣 는 이웃 블록 BV의 수직 성분 𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑣𝑣𝑣𝑣 에 모션 시프트를 더해 계산한다. 

 

𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣𝑣𝑣 = 2(𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑦𝑦𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) + 𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑣𝑣𝑣𝑣         (14) 

 

여기서 (𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)는 플립이 적용된 이웃 블록의 중심 위치를, (𝑥𝑥𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑦𝑦𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 )는 현재 블록의 중

심 위치를 나타낸다.  

 

 Block Vector Differences-Prediction 

Block Vector Differences Prediction (BVD Prediction)은 IBC 예측 모드에서의 BVD를 효율적

으로 부호화 하기 위해 제안된 기술로, 기존 화면간 예측에서 사용되는 MVD prediction을 

IBC 예측 모드로 확장한 것이다[15]. 구체적으로, 가능한 BVD의 부호 조합과 BVD 크기를 

표현하는 지수-골롬(Exponential-Golomb) 부호의 suffix 구간에서 가중치가 큰 상위 4개 

bin 조합을 결합하여 MV 후보를 생성한다. 생성된 MV 후보는 템플릿 매칭 기반으로 정렬

하고, 선택된 후보의 인덱스를 전송한다. 디코더는 동일한 절차를 이용해 후보 리스트를 

구성하여, 시그널링 된 인덱스를 이용해 최종 BVD를 복원한다. 

 

 Filtered IBC 

Filtered IBC (FIBC)는 현재 템플릿과 참조 템플릿 간의 MSE를 최소화하도록 유도된 선형, 

비선형 필터를 IBC 예측 신호에 적용하여 예측 오차를 감소시키는 기법이다[16]. 구체적으

로 CCCM과 동일한 7-tap 필터를 사용하며, 필터 계수는 현재 템플릿과 참조 템플릿 간의 

MSE를 최소화하는 값으로 도출된다. 비선형 항 𝑃𝑃𝑃𝑃는 중심 샘플 𝐶𝐶𝐶𝐶의 제곱 값을 이용하여 정

의되며, 컨텐츠의 비트 깊이에 맞게 정규화 된다. 또한 바이어스 항 B는 입력과 출력 간의 

평균적인 오프셋을 보상하기 위한 상수 항으로, 10비트 컨텐츠의 경우 휘도 중간 값인 512

로 설정된다. 해당 필터 기반 IBC 모드는 Merge 모드가 아닌 IBC 블록에 대한 추가 예측 

모드로만 사용되며, RR-IBC, IBC with Local Illumination Compensation (IBC-LIC), IBC 

Combination Intra block copy and Intra Prediction (IBC-CIIP) 모드와 함께 사용하지 않는다. 

IBC Merge 모드의 경우에는 Merge 후보 필터 모드 적용 유무를 나타내는 플래그는 IBC-

LIC 플래그 이전에 시그널링한다. 

 

에 모션 시프트를 더해 계산한다.

여기서 

BVP의 y 성분을 시그널링 하지 않으며, 수직 반전이 적용되는 경우에는 x 성분을 시그널링 

하지 않는다. 또한 대칭성을 효과적으로 활용하기 위해, 이웃 블록의 반전 타입을 고려한 

flip-aware BV 보정 기법이 BV 후보에 적용된다. 예를 들어 <그림 6>과 같이, 이웃 블록의 

플립 타입에 따라 BV를 보정하여 현재 블록의 BV를 유도한다. 이웃 블록이 수평 반전으로 

부호화 된 경우, 식 (13)와 같이 현재 블록의 수평 BV 성분 𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ 는 이웃 블록 BV의 수평 
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동일한 원리로 이웃 블록이 수직 반전된 경우, 식 (14)와 같이 현재 블록의 수직 BV 성분 
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심 위치를 나타낸다.  

 

 Block Vector Differences-Prediction 

Block Vector Differences Prediction (BVD Prediction)은 IBC 예측 모드에서의 BVD를 효율적

으로 부호화 하기 위해 제안된 기술로, 기존 화면간 예측에서 사용되는 MVD prediction을 

IBC 예측 모드로 확장한 것이다[15]. 구체적으로, 가능한 BVD의 부호 조합과 BVD 크기를 

표현하는 지수-골롬(Exponential-Golomb) 부호의 suffix 구간에서 가중치가 큰 상위 4개 

bin 조합을 결합하여 MV 후보를 생성한다. 생성된 MV 후보는 템플릿 매칭 기반으로 정렬

하고, 선택된 후보의 인덱스를 전송한다. 디코더는 동일한 절차를 이용해 후보 리스트를 

구성하여, 시그널링 된 인덱스를 이용해 최종 BVD를 복원한다. 

 

 Filtered IBC 

Filtered IBC (FIBC)는 현재 템플릿과 참조 템플릿 간의 MSE를 최소화하도록 유도된 선형, 

비선형 필터를 IBC 예측 신호에 적용하여 예측 오차를 감소시키는 기법이다[16]. 구체적으

로 CCCM과 동일한 7-tap 필터를 사용하며, 필터 계수는 현재 템플릿과 참조 템플릿 간의 

MSE를 최소화하는 값으로 도출된다. 비선형 항 𝑃𝑃𝑃𝑃는 중심 샘플 𝐶𝐶𝐶𝐶의 제곱 값을 이용하여 정

의되며, 컨텐츠의 비트 깊이에 맞게 정규화 된다. 또한 바이어스 항 B는 입력과 출력 간의 

평균적인 오프셋을 보상하기 위한 상수 항으로, 10비트 컨텐츠의 경우 휘도 중간 값인 512

로 설정된다. 해당 필터 기반 IBC 모드는 Merge 모드가 아닌 IBC 블록에 대한 추가 예측 

모드로만 사용되며, RR-IBC, IBC with Local Illumination Compensation (IBC-LIC), IBC 

Combination Intra block copy and Intra Prediction (IBC-CIIP) 모드와 함께 사용하지 않는다. 

IBC Merge 모드의 경우에는 Merge 후보 필터 모드 적용 유무를 나타내는 플래그는 IBC-

LIC 플래그 이전에 시그널링한다. 

 

는 플립이 적용된 이웃 블록의 중
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flip-aware BV 보정 기법이 BV 후보에 적용된다. 예를 들어 <그림 6>과 같이, 이웃 블록의 

플립 타입에 따라 BV를 보정하여 현재 블록의 BV를 유도한다. 이웃 블록이 수평 반전으로 
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 Block Vector Differences-Prediction 

Block Vector Differences Prediction (BVD Prediction)은 IBC 예측 모드에서의 BVD를 효율적

으로 부호화 하기 위해 제안된 기술로, 기존 화면간 예측에서 사용되는 MVD prediction을 

IBC 예측 모드로 확장한 것이다[15]. 구체적으로, 가능한 BVD의 부호 조합과 BVD 크기를 

표현하는 지수-골롬(Exponential-Golomb) 부호의 suffix 구간에서 가중치가 큰 상위 4개 

bin 조합을 결합하여 MV 후보를 생성한다. 생성된 MV 후보는 템플릿 매칭 기반으로 정렬

하고, 선택된 후보의 인덱스를 전송한다. 디코더는 동일한 절차를 이용해 후보 리스트를 

구성하여, 시그널링 된 인덱스를 이용해 최종 BVD를 복원한다. 

 

 Filtered IBC 

Filtered IBC (FIBC)는 현재 템플릿과 참조 템플릿 간의 MSE를 최소화하도록 유도된 선형, 

비선형 필터를 IBC 예측 신호에 적용하여 예측 오차를 감소시키는 기법이다[16]. 구체적으

로 CCCM과 동일한 7-tap 필터를 사용하며, 필터 계수는 현재 템플릿과 참조 템플릿 간의 

MSE를 최소화하는 값으로 도출된다. 비선형 항 𝑃𝑃𝑃𝑃는 중심 샘플 𝐶𝐶𝐶𝐶의 제곱 값을 이용하여 정

의되며, 컨텐츠의 비트 깊이에 맞게 정규화 된다. 또한 바이어스 항 B는 입력과 출력 간의 

평균적인 오프셋을 보상하기 위한 상수 항으로, 10비트 컨텐츠의 경우 휘도 중간 값인 512

로 설정된다. 해당 필터 기반 IBC 모드는 Merge 모드가 아닌 IBC 블록에 대한 추가 예측 

모드로만 사용되며, RR-IBC, IBC with Local Illumination Compensation (IBC-LIC), IBC 

Combination Intra block copy and Intra Prediction (IBC-CIIP) 모드와 함께 사용하지 않는다. 

IBC Merge 모드의 경우에는 Merge 후보 필터 모드 적용 유무를 나타내는 플래그는 IBC-

LIC 플래그 이전에 시그널링한다. 

 

는 현재 블록의 중심 위치를 나타

낸다. 

3) Block Vector Differences-Prediction

Block Vector Differences Prediction (BVD Pre-

diction)은 IBC 예측 모드에서의 BVD를 효율적으로 부

호화하기 위해 제안된 기술로, 기존 화면간 예측에서 사

용되는 MVD prediction을 IBC 예측 모드로 확장한 것이

다[15]. 구체적으로, 가능한 BVD의 부호 조합과 BVD 크

기를 표현하는 지수-골롬(Exponential-Golomb) 부호의 

suffix 구간에서 가중치가 큰 상위 4개 bin 조합을 결합하

여 MV 후보를 생성한다. 생성된 MV 후보는 템플릿 매칭 

기반으로 정렬하고, 선택된 후보의 인덱스를 전송한다. 디

코더는 동일한 절차를 이용해 후보 리스트를 구성하여, 시

그널링된 인덱스를 이용해 최종 BVD를 복원한다.

4) Filtered IBC

Filtered IBC (FIBC)는 현재 템플릿과 참조 템플릿 

간의 MSE를 최소화하도록 유도된 선형, 비선형 필터

를 IBC 예측 신호에 적용하여 예측 오차를 감소시키는 

기법이다[16]. 구체적으로 CCCM과 동일한 7-tap 필터

를 사용하며, 필터 계수는 현재 템플릿과 참조 템플릿 

간의 MSE를 최소화하는 값으로 도출된다. 비선형 항 P

는 중심 샘플 C의 제곱 값을 이용하여 정의되며, 컨텐츠

의 비트 깊이에 맞게 정규화된다. 또한 바이어스 항 B는 

입력과 출력 간의 평균적인 오프셋을 보상하기 위한 상

수 항으로, 10비트 컨텐츠의 경우 휘도 중간 값인 512

로 설정된다. 해당 필터 기반 IBC 모드는 Merge 모드

가 아닌 IBC 블록에 대한 추가 예측 모드로만 사용되며, 

<그림 6> Filp-aware BV Adjustment

 

III. 블록 벡터 기반 화면내 부호화 기술 

1. Intra Block Copy 

IBC는 현재 프레임 내에서 현재 블록과 유사한 참조 블록을 탐색하여 예측 블록으로 사용하

는 화면내 예측 기법이다. ECM에서는 IBC의 예측 성능과 활용도를 향상시키기 위해 기존 화

면간 예측 기술을 IBC 예측으로 확장하고, 블록 벡터 정밀도를 1/4-pel 수준으로 확장하였으

며, 참조 영역 또한 현재 CTU 기준 상단 방향으로 두 개의 CTU 행까지 확대하였다. 본 절에

서는 ECM에 채택된 IBC 예측 기법에 대해 소개하고자 한다. 

 

 IBC with Template Matching 

IBC with Template Matching (IBC-TM)은 기존 화면간 예측에서 사용되는 템플릿 매칭 기반 

움직임 벡터(Motion Vector, MV) 도출 방식을 IBC 예측으로 확장한 기법으로, 현재 블록의 
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는 4-pel 단위로 제한된다. 

 

 Reconstructed-Reordered IBC 

 

 
그림 6. Filp-aware BV Adjustment 

 

Reconstructed-Reordered IBC (RR-IBC) 모드는 IBC로 부호화 된 블록에 대해 수평 반전과 

수직 반전의 두 가지 반전 타입을 지원하는 예측 모드이다[14]. IBC AMVP 모드에서는 재구

성 블록의 반전 여부를 나타내는 플래그를 시그널링하며, 반전이 적용된 경우 반전 타입을 

지정하는 플래그가 추가로 시그널링한다. 반면 IBC Merge 모드에서는 주변 블록으로부터 

플래그를 상속하여 반전 여부와 타입이 결정된다. 수평 반전이 적용되는 경우 BV 또는 

BVP의 y 성분을 시그널링 하지 않으며, 수직 반전이 적용되는 경우에는 x 성분을 시그널링 

하지 않는다. 또한 대칭성을 효과적으로 활용하기 위해, 이웃 블록의 반전 타입을 고려한 

flip-aware BV 보정 기법이 BV 후보에 적용된다. 예를 들어 <그림 6>과 같이, 이웃 블록의 

플립 타입에 따라 BV를 보정하여 현재 블록의 BV를 유도한다. 이웃 블록이 수평 반전으로 

부호화 된 경우, 식 (13)와 같이 현재 블록의 수평 BV 성분 𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ 는 이웃 블록 BV의 수평 

성분𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ 에 모션 시프트를 더해 계산한다.  
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동일한 원리로 이웃 블록이 수직 반전된 경우, 식 (14)와 같이 현재 블록의 수직 BV 성분 
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심 위치를 나타낸다.  

 

 Block Vector Differences-Prediction 

Block Vector Differences Prediction (BVD Prediction)은 IBC 예측 모드에서의 BVD를 효율적

으로 부호화 하기 위해 제안된 기술로, 기존 화면간 예측에서 사용되는 MVD prediction을 

IBC 예측 모드로 확장한 것이다[15]. 구체적으로, 가능한 BVD의 부호 조합과 BVD 크기를 

표현하는 지수-골롬(Exponential-Golomb) 부호의 suffix 구간에서 가중치가 큰 상위 4개 

bin 조합을 결합하여 MV 후보를 생성한다. 생성된 MV 후보는 템플릿 매칭 기반으로 정렬

하고, 선택된 후보의 인덱스를 전송한다. 디코더는 동일한 절차를 이용해 후보 리스트를 

구성하여, 시그널링 된 인덱스를 이용해 최종 BVD를 복원한다. 

 

 Filtered IBC 

Filtered IBC (FIBC)는 현재 템플릿과 참조 템플릿 간의 MSE를 최소화하도록 유도된 선형, 

비선형 필터를 IBC 예측 신호에 적용하여 예측 오차를 감소시키는 기법이다[16]. 구체적으

로 CCCM과 동일한 7-tap 필터를 사용하며, 필터 계수는 현재 템플릿과 참조 템플릿 간의 

MSE를 최소화하는 값으로 도출된다. 비선형 항 𝑃𝑃𝑃𝑃는 중심 샘플 𝐶𝐶𝐶𝐶의 제곱 값을 이용하여 정

의되며, 컨텐츠의 비트 깊이에 맞게 정규화 된다. 또한 바이어스 항 B는 입력과 출력 간의 

평균적인 오프셋을 보상하기 위한 상수 항으로, 10비트 컨텐츠의 경우 휘도 중간 값인 512

로 설정된다. 해당 필터 기반 IBC 모드는 Merge 모드가 아닌 IBC 블록에 대한 추가 예측 

모드로만 사용되며, RR-IBC, IBC with Local Illumination Compensation (IBC-LIC), IBC 

Combination Intra block copy and Intra Prediction (IBC-CIIP) 모드와 함께 사용하지 않는다. 

IBC Merge 모드의 경우에는 Merge 후보 필터 모드 적용 유무를 나타내는 플래그는 IBC-

LIC 플래그 이전에 시그널링한다. 
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하지 않는다. 또한 대칭성을 효과적으로 활용하기 위해, 이웃 블록의 반전 타입을 고려한 

flip-aware BV 보정 기법이 BV 후보에 적용된다. 예를 들어 <그림 6>과 같이, 이웃 블록의 
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RR-IBC, IBC with Local Illumination Compensation 

(IBC-LIC), IBC Combination Intra block copy and 

Intra Prediction (IBC-CIIP) 모드와 함께 사용하지 않

는다. IBC Merge 모드의 경우에는 Merge 후보 필터 모

드 적용 유무를 나타내는 플래그는 IBC-LIC 플래그 이전

에 시그널링한다.

5) Combination of IBC with other coding tools

ECM에서는 예측 성능의 향상을 위해 기존 화면간 예측 

기술들을 IBC 예측으로 확장하였다. IBC Merge Mode 

with Block Vector Differences (IBC-MBVD)는 IBC 

Merge로 유도된 BV에 BVD를 추가하여 예측 정확도를 

향상시키는 기법이다[17]. ECM에서는 MBVD 후보 도출

의 효율을 높이기 위해, BVD 후보를 1-pel 간격으로 오

프셋을 탐색한 후, 선택된 후보 주변에 대해 1/4-pel 간격

으로 정밀 탐색하는 방법을 도입하였다. IBC-LIC는 현재 

블록과 참조 블록 사이의 지역 조명 변화를 고려하여 예

측 블록을 생성하는 기술이다[18]. 최종 예측 블록은 참

조 블록에 대해 단일 또는 두 개의 선형 모델을 적용하

여 생성된다. 더불어 단일 예측의 한계를 보완하기 위해, 

두 개의 예측 신호를 결합하는 기법들이 IBC로 확장되었

다. IBC-CIIP는 기존 CIIP와 유사하게 IBC 예측 신호와 

화면내 예측 신호를 가중합하여 최종 예측 신호를 생성

한다[18]. IBC with Geometry Partitioning Mode (IBC-

GPM)는 GPM을 IBC 예측으로 확장한 기법으로, 분할된 

영역 각각에 대해 IBC 예측 또는 화면내 예측을 선택하여 

예측 신호를 구성한다[17]. 단, 두 영역 모두 화면내 예측

을 사용하는 경우는 허용되지 않는다. IBC BVP-Merge

와 Bi-predictive IBC merge는 양방향 화면간 예측 모드

와 같이 두 예측 신호를 결합하는 방식이다[19]. 두 모드는 

두 개의 BV가 AMVP 모드와 Merge 리스트에서 각각 도

출되는지, 혹은 모두 Merge 후보 리스트에서 도출되는지

에 차이가 있다. 두 방식에서 생성된 양방향 IBC 예측 신

호는 두 예측 샘플에 대한 1:1 가중합을 통해 최종 예측 값

으로 생성된다.

2. �Intra Template Matching 
Prediction

IntraTMP는 템플릿 기반 화면내 예측 모드로, 현재 프

레임 내 복원된 영역에서 현재 블록의 템플릿과 가장 유사

한 템플릿을 갖는 참조 블록을 탐색하여 예측 신호를 생성

한다[20]. 최대 64×64 블록까지 적용 가능하며, 현재 블

록의 인접 복원 샘플로부터 L-shape, Top, Left 형태의 템

플릿을 구성한 뒤, 사전에 정의된 검색 영역 내에서 SAD 

기반의 템플릿 매칭을 수행한다. LIC 서브 모드가 활성화

된 경우에는 Mean-Removed SAD (MRSAD)가 비용 함

수로 사용된다. 탐색 결과 중 비용이 최소인 위치의 재

구성 블록을 복사하여 예측 신호를 생성한다. IntraTMP

는 예측 품질을 높이기 위해 단일 예측자 모드(single 

predictor), 다중 예측자 융합 모드(fusion of multiple 

predictor), 서브 픽셀 정밀도 모드(sub-pel precision), 

선형 필터 모델(linear filter model), LIC 서브 모드들을 

제공하며, 각 서브 모드는 RD 기반의 최적화 과정을 통

해 최종 선택된다[21][22][23][24]. 구체적으로, 단일 예측

자 모드는 4배 서브 샘플링 기반 탐색 후 최적 후보 주변 

3×3 영역에서 1픽셀 간격의 세밀 탐색을 통해 최대 19개

의 BV를 선정하여 최종 매칭 위치를 선택한다. 다중 예측

자 융합 모드의 경우, 단일 후보에 의존하지 않고 여러 참

조 블록을 템플릿 매칭 비용 또는 Wiener 필터 기반의 위

치 의존적 가중치로 결합하여 예측한다. 또한 서브 픽셀 

정밀도 모드는 1/2,  1/4 서브 픽셀 위치까지 포함하여 탐

색함으로써 매칭 정확도를 향상시키며, 선형 필터 모델

은 템플릿 간의 선형 관계를 모델링하여 필터 계수를 학

습하고 이를 참조 블록에 적용하여 정교한 보정을 수행한

다. 마지막으로 LIC는 프레임 내 국부 조명 변화로 인한 

예측 오차를 줄이는데 사용되며 다중 예측자 융합 모드

와 함께 사용 가능하다. 최종적으로 IntraTMP로 생성된 

예측 신호는 Overlapped Block Motion Compensation 

(OBMC)을 통해 블록 경계 불연속을 완화하여 예측 품질

을 향상시킨다.
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Ⅳ. 결 론

본 고에서는 ECM에 통합된 색차 화면내 예측 기술과 

블록 벡터 기반 부호화 기술의 구조와 동작 원리를 소개하

였다. ECM은 기존 VVC의 CCLM 외에도 CCP, Non-CCP 

기반의 다양한 예측 도구를 추가하여 색차 화면내 예측 성

능을 크게 향상시켰다. 또한 VVC에서 IBC 모드에 국한되

었던 블록 벡터 활용을 넘어, 템플릿 매칭 기반 예측 방식

인 IntraTMP를 도입하여 화면내 영역에서 블록 벡터 활

용의 유연성을 확보하였다. 특히, 블록 벡터가 일부 화면

간 예측과 연계되어 사용됨으로써 전체 예측 구조 간의 경

계가 완화되고 예측 신호의 다양성이 증가하는 효과를 보

였다. 그러나 이러한 예측 도구의 확장은 부호화 복잡도를 

동반하였다. ECM-18.0은 VVC 대비 인코더와 디코더 복

잡도가 각각 1080%, 606% 증가한 것으로 나타났다[3]. 따

라서 향후 연구에서는 부호화 효율을 유지하면서도 복잡

도를 줄이기 위해 구조적 최적화, 탐색 영역 축소, 예측 모

드 단순화 등의 접근이 필요하다.
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- 주관심분야 : 영상처리, 영상압축, 비디오압축, 신호처리, 컴퓨터 비전, 딥러닝

이 소 은

저자소개 

 
김용헌  

- 2025년 : 국립한밭대학교 정보통신공학과 학사 

- 주관심분야 : 영상처리, 영상압축, 비디오압축, 신호처리, 컴퓨터 비전, 딥러닝 

 
노승민 

- 2025년 : 국립한밭대학교 정보통신공학과 학사 

- 주관심분야 : 영상처리, 영상압축, 비디오압축, 신호처리, 컴퓨터 비전, 딥러닝 

 
방준호 

- 2023년 : 국립한밭대학교 정보통신공학과 학사 

- 주관심분야 : 영상처리, 영상압축, 비디오압축, 신호처리, 컴퓨터 비전, 딥러닝 

-  

 
이소은 

- 2024년 : 국립한밭대학교 정보통신공학과 학사 

- 주관심분야 : 영상처리, 영상압축, 비디오압축, 신호처리, 컴퓨터 비전, 딥러닝 - 1997년 : 경북대학교 전자공학과 학사

- 1999년 : 한국과학기술원 전기및전자공학과 석사

- 2004년 : 한국과학기술원 전기및전자공학과 박사

- 2004년 ~ 2010년 : 한국전자통신연구원 방송미디어연구부 선임연구원

- 2010년 ~ 현재 : 국립한밭대학교 지능미디어공학과 교수

- 주관심분야 : 영상처리, 비디오압축, 컴퓨터 비전, 딥러닝

최 해 철

 
최해철 

- 1997년 : 경북대학교 전자공학과 학사 

- 1999년 : 한국과학기술원 전기및전자공학과 석사 

- 2004년 : 한국과학기술원 전기및전자공학과 박사 

- 2004년 ~ 2010년 : 한국전자통신연구원 방송미디어연구부 선임연구원 

- 2010년 ~ 현재 : 국립한밭대학교 지능미디어공학과 교수 

- 주관심분야 : 영상처리, 비디오압축, 컴퓨터 비전, 딥러닝 

 

 


